Artificial intelligence-based pulmonary embolism classification: Development and validation using real-world data

被引:1
|
作者
da Silva, Luan Oliveira [1 ,3 ]
da Silva, Maria Carolina Bueno [1 ]
Ribeiro, Guilherme Alberto Sousa [1 ]
de Camargo, Thiago Fellipe Ortiz [1 ,2 ]
dos Santos, Paulo Victor [1 ,2 ]
Mendes, Giovanna de Souza [1 ]
de Paiva, Joselisa Peres Queiroz [1 ]
Soares, Anderson da Silva [3 ]
Reis, Marcio Rodrigues da Cunha [1 ,4 ]
Loureiro, Rafael Maffei [1 ]
Calixto, Wesley Pacheco [2 ,4 ]
机构
[1] Hosp Israelita Albert Einstein, Dept Radiol, Sao Paulo, Brazil
[2] Univ Fed Goias, Elect Mech & Comp Engn Sch, Goiania, Brazil
[3] Univ Fed Goias, Inst Informat INF, Goiania, Brazil
[4] Fed Inst Goias, Technol Res & Dev Ctr GCITE, Goiania, GO, Brazil
来源
PLOS ONE | 2024年 / 19卷 / 08期
关键词
COMPUTED-TOMOGRAPHY PULMONARY; NEURAL-NETWORK; ANGIOGRAPHY; CTPA; OPTIMIZATION;
D O I
10.1371/journal.pone.0305839
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents an artificial intelligence-based classification model for the detection of pulmonary embolism in computed tomography angiography. The proposed model, developed from public data and validated on a large dataset from a tertiary hospital, uses a two-dimensional approach that integrates temporal series to classify each slice of the examination and make predictions at both slice and examination levels. The training process consists of two stages: first using a convolutional neural network InceptionResNet V2 and then a recurrent neural network long short-term memory model. This approach achieved an accuracy of 93% at the slice level and 77% at the examination level. External validation using a hospital dataset resulted in a precision of 86% for positive pulmonary embolism cases and 69% for negative pulmonary embolism cases. Notably, the model excels in excluding pulmonary embolism, achieving a precision of 73% and a recall of 82%, emphasizing its clinical value in reducing unnecessary interventions. In addition, the diverse demographic distribution in the validation dataset strengthens the model's generalizability. Overall, this model offers promising potential for accurate detection and exclusion of pulmonary embolism, potentially streamlining diagnosis and improving patient outcomes.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Evaluation of a novel artificial intelligence-based screening system for diabetic retinopathy in community of China: a real-world study
    Ming, Shuai
    Xie, Kunpeng
    Lei, Xiang
    Yang, Yingrui
    Zhao, Zhaoxia
    Li, Shuyin
    Jin, Xuemin
    Lei, Bo
    INTERNATIONAL OPHTHALMOLOGY, 2021, 41 (04) : 1291 - 1299
  • [32] Artificial intelligence-based classification of echocardiographic views
    Naser, Jwan A.
    Lee, Eunjung
    Pislaru, Sorin, V
    Tsaban, Gal
    Malins, Jeffrey G.
    Jackson, John, I
    Anisuzzaman, D. M.
    Rostami, Behrouz
    Lopez-Jimenez, Francisco
    Friedman, Paul A.
    Kane, Garvan C.
    Pellikka, Patricia A.
    Attia, Zachi, I
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2024, 5 (03): : 260 - 269
  • [33] Caries Detection and Classification in Photographs Using an Artificial Intelligence-Based Model-An External Validation Study
    Frenkel, Elisabeth
    Neumayr, Julia
    Schwarzmaier, Julia
    Kessler, Andreas
    Ammar, Nour
    Schwendicke, Falk
    Kuehnisch, Jan
    Dujic, Helena
    DIAGNOSTICS, 2024, 14 (20)
  • [34] REAL-WORLD PERFORMANCE AND VALIDATION OF THE ARTIFICIAL INTELLIGENCE ENHANCED ELECTROCARDIOGRAM FOR THE DETECTION OF AMYLOIDOSIS
    Harmon, David
    Baez-Suarez, Abraham
    Scott, Christopher
    Murphree, Dennis
    Malik, Awais
    Attia, Zachi Itzhak
    Lopez-Jimenez, Francisco
    Friedman, Paul A.
    Dispenzieri, Angela
    Grogan, Martha
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2023, 81 (08) : 2405 - 2405
  • [35] The proof of the pudding: in praise of a culture of real-world validation for medical artificial intelligence
    Cabitza, Federico
    Zeitoun, Jean-David
    ANNALS OF TRANSLATIONAL MEDICINE, 2019, 7 (08)
  • [36] Personalized venlafaxine dose prediction using artificial intelligence technology: a retrospective analysis based on real-world data
    Liu, Yimeng
    Yu, Ze
    Ye, Xuxiao
    Zhang, Jinyuan
    Hao, Xin
    Gao, Fei
    Yu, Jing
    Zhou, Chunhua
    INTERNATIONAL JOURNAL OF CLINICAL PHARMACY, 2024, 46 (04) : 926 - 936
  • [37] Artificial intelligence-assisted polyp detection and classification - real-world perspectives
    Cooney, Joseph
    Appiahene, Priscilla
    Ranasinghe, Ian
    Hayat, Jamal
    GUT, 2023, 72 (SUPPL_2) : A214 - A214
  • [38] Artificial intelligence-based classification of breast cancer using cellular images
    Tripathy, Rajesh Kumar
    Mahanta, Sailendra
    Paul, Subhankar
    RSC ADVANCES, 2014, 4 (18): : 9349 - 9355
  • [39] Towards artificial intelligence-based disease prediction algorithms that comprehensively leverage and continuously learn from real-world clinical tabular data systems
    Lee-St, Terrence J.
    Kanwar, Oshin
    Abidi, Emna
    El Nekidy, Wasim
    Piechowski-Jozwiak, Bartlomiej
    PLOS DIGITAL HEALTH, 2024, 3 (09):
  • [40] Artificial Intelligence-Based Classification of CT Images Using a Hybrid SpinalZFNet
    Maqsood, Faiqa
    Zhenfei, Wang
    Ali, Muhammad Mumtaz
    Qiu, Baozhi
    Rehman, Naveed Ur
    Sabah, Fahad
    Mahmood, Tahir
    Din, Irfanud
    Sarwar, Raheem
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2024, 16 (04) : 907 - 925