Noether Symmetries of the Triple Degenerate DNLS Equations

被引:0
|
作者
Camci, Ugur [1 ]
机构
[1] Roger Williams Univ, Dept Chem & Phys, One Old Ferry Rd, Bristol, RI 02809 USA
关键词
nonlinear Schr & ouml; dinger equation; Alfv & eacute; n waves; Noether symmetry; Lie symmetry;
D O I
10.3390/mca29040060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, Lie symmetries and Noether symmetries along with the corresponding conservation laws are derived for weakly nonlinear dispersive magnetohydrodynamic wave equations, also known as the triple degenerate derivative nonlinear Schr & ouml;dinger equations. The main goal of this study is to obtain Noether symmetries of the second-order Lagrangian density for these equations using the Noether symmetry approach with a gauge term. For this Lagrangian density, we compute the conserved densities and fluxes corresponding to the Noether symmetries with a gauge term, which differ from the conserved densities obtained using Lie symmetries in Webb et al. (J. Plasma Phys. 1995, 54, 201-244; J. Phys. A Math. Gen. 1996, 29, 5209-5240). Furthermore, we find some new Lie symmetries of the dispersive triple degenerate derivative nonlinear Schr & ouml;dinger equations for non-vanishing integration functions Ki(t) (i=1,2,3).
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Lie and Noether symmetries for a class of fourth-order Emden-Fowler equations
    Freire, Igor Leite
    da Silva, Priscila Leal
    Torrisi, Mariano
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (24)
  • [32] Lagrangian noether symmetries as canonical transformations
    García, JA
    Pons, JM
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (23): : 3897 - 3914
  • [33] The geometric nature of Lie and Noether symmetries
    Tsamparlis, Michael
    Paliathanasis, Andronikos
    GENERAL RELATIVITY AND GRAVITATION, 2011, 43 (06) : 1861 - 1881
  • [34] Noether symmetries in interacting quintessence cosmology
    Piedipalumbo, Ester
    De laurentis, Mariafelicia
    Capozziello, Salvatore
    PHYSICS OF THE DARK UNIVERSE, 2020, 27
  • [35] Noether symmetries in f(G) gravity
    M. Sharif
    H. Ismat Fatima
    Journal of Experimental and Theoretical Physics, 2016, 122 : 104 - 112
  • [36] Conformal equivalence and Noether symmetries in cosmology
    Capozziello, S
    de Ritis, R
    Marino, AA
    CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (12) : 3259 - 3268
  • [37] LIE AND NOETHER SYMMETRIES AND A RESULT OF LOGAN
    THOMPSON, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (03): : L105 - L110
  • [38] Noether and master symmetries for the Toda lattice
    Damianou, PA
    Sophocleous, C
    APPLIED MATHEMATICS LETTERS, 2005, 18 (02) : 163 - 170
  • [39] Noether symmetries in symmetric teleparallel cosmology
    Dialektopoulos, Konstantinos F.
    Koivisto, Tomi S.
    Capozziello, Salvatore
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (07):
  • [40] NOETHER SYMMETRIES AND THE SWINGING ATWOOD MACHINE
    MOREIRA, IC
    ALMEIDA, MA
    JOURNAL DE PHYSIQUE II, 1991, 1 (07): : 711 - 715