Laminar burning velocity measurements of NH3/H2+Air 3 /H 2+Air mixtures at elevated temperatures

被引:2
|
作者
Shawnam [1 ]
Berwal, Pragya [1 ]
Singh, Muskaan [2 ]
Kumar, Sudarshan [1 ]
机构
[1] Indian Inst Technol, Dept Aerosp Engn, Mumbai 400076, India
[2] PEC Univ Technol, Aerosp Engn Dept, Chandigarh, India
关键词
AMMONIA OXIDATION; PREMIXED FLAMES; HIGH-PRESSURE; HYDROGEN; NH3/H-2/AIR; REDUCTION; MECHANISM;
D O I
10.1016/j.ijhydene.2024.05.222
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents detailed investigations of the combustion characteristics of NH3/H2 blends as a possible alternative fuel to address the pressing environmental and energy security challenges. The experimental measurements of laminar burning velocity (LBV) are reported for a range of mixture equivalence ratios (phi) varied from 0.8 to 1.2 and mixture temperatures up to 720 K using the externally heated diverging channel (EHDC) method. It is observed that LBV increases nearly four times for specific NH3/H2 blends with an increase in mixture temperature from 300 K to 650 K. While predictions from various kinetic models align well at ambient conditions, discrepancies emerge at higher temperatures, emphasizing the need for refining these models to accurately predict flame propagation behaviour. A detailed sensitivity analysis of the NH3/H2/air fuel blend provides insights into critical reactions and species influencing burning velocity across different mixture conditions. Notably, reactions involving NNH radicals are found to strongly influence LBV for low hydrogen fractions in NH3. Additionally, reaction pathway analysis (RPA) highlights dominant reactions under various conditions and reveals temperature-dependent NO emissions. The present study helps highlight the importance of understanding the combustion behaviour of NH3/H2 blends for achieving carbon-free energy needs. The experimental data at elevated temperatures offers valuable insights into the combustion behaviour of these mixtures, enabling the advancements for cleaner energy solutions.
引用
收藏
页码:143 / 154
页数:12
相关论文
共 50 条
  • [31] Laminar burning velocity of n-butane/Hydrogen/Air mixtures at elevated temperatures
    Jithin, E. V.
    Dinesh, Kadali
    Mohammad, Akram
    Velamati, Ratna Kishore
    ENERGY, 2019, 176 : 410 - 417
  • [32] Laminar Burning Velocity of n-Propanol and Air Mixtures at Elevated Mixture Temperatures
    Katoch, Amit
    Chauhan, Ayush
    Kumar, Sudarshan
    ENERGY & FUELS, 2018, 32 (05) : 6363 - 6370
  • [33] IGNITION OF H2/O2/NH3, H2/AIR/NH3 AND CH4/O2/NH3 MIXTURES BY EXCIMER-LASER PHOTOLYSIS OF NH3
    CHOU, MS
    ZUKOWSKI, TJ
    COMBUSTION AND FLAME, 1991, 87 (02) : 191 - 202
  • [34] Combustion of N-Decane plus air Mixtures To Investigate Laminar Burning Velocity Measurements At Elevated Temperatures
    Kumar, Rohit
    Velamati, Ratna Kishore
    Kumar, Sudarshan
    COMBUSTION SCIENCE AND TECHNOLOGY, 2024, 196 (10) : 1490 - 1508
  • [35] Effect of N2/CO2 dilution on laminar burning velocity of H2-air mixtures at high temperatures
    Paidi, Santosh K.
    Bhavaraju, Amrutha
    Akram, Mohammad
    Kumar, Sudarshan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (31) : 13812 - 13821
  • [36] Combustion of NH3/CH4/Air and NH3/H2/Air Mixtures in a Porous Burner: Experiments and Kinetic Modeling
    Rocha, Rodolfo C.
    Ramos, C. Filipe
    Costa, Mario
    Bai, Xue-Song
    ENERGY & FUELS, 2019, 33 (12) : 12767 - 12780
  • [37] Laminar burning velocities for mixtures of methanol and air at elevated temperatures
    Liao, S. Y.
    Jiang, D. M.
    Huang, Z. H.
    Shen, W. D.
    Yuan, C.
    Cheng, Q.
    ENERGY CONVERSION AND MANAGEMENT, 2007, 48 (03) : 857 - 863
  • [38] Experimental study on NH3/H2/air, NH3/CO/air, NH3/H2/CO/air premix combustion in a closed pipe and dynamic simulation at high temperature and pressure
    Li, Ningning
    Deng, Haoxin
    Xu, Zhuangzhuang
    Yan, Mengmeng
    Wei, Shengnan
    Sun, Guangzhen
    Wen, Xiaoping
    Wang, Fahui
    Chen, Guoyan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (88) : 34551 - 34564
  • [39] Uniqueness and similarity in flame propagation of pre-dissociated NH3 + air and NH3 + H2 + air mixtures: An experimental and modelling study
    Han, Xinlu
    Wang, Zhihua
    He, Yong
    Zhu, Yanqun
    Lin, Riyi
    Konnov, Alexander A.
    FUEL, 2022, 327
  • [40] Experimental and kinetic study on laminar burning velocities of NH3/CH4/ H2S/air flames
    Zhu, Runfan
    Han, Xinlu
    Zhang, Ziyue
    He, Yong
    Wang, Zhihua
    FUEL, 2023, 332