Enhancing Supply Chain Management Efficiency: A Data-Driven Approach using Predictive Analytics and Machine Learning Algorithms

被引:0
|
作者
Ghodake, Shamrao Parashram [1 ]
Malkar, Vinod Ramchandra [2 ]
Santosh, Kathari [3 ]
Jabasheela, L. [4 ]
Abdufattokhov, Shokhjakhon [5 ,6 ]
Gopi, Adapa [7 ]
机构
[1] Savitribai Phule Pune Univ, Dept MBA, Sanjivani Coll Engn, Pune, Maharashtra, India
[2] Savitribai Phule Pune Univ, Sanjivani Inst Management Studies, Pune, Maharashtra, India
[3] CMR Inst Technol, Dept MBA, Bengaluru, India
[4] Panimalar Engn Coll, Dept Comp Sci & Engn, Chennai, Tamil Nadu, India
[5] Turin Polytech Univ Tashkent, Automat Control & Comp Engn Dept, Tashkent, Uzbekistan
[6] Tashkent Int Univ Educ, Dept Informat Technol, Tashkent, Uzbekistan
[7] Koneru Lakshmaiah Educ Fdn, Dept Comp Sci & Engn, Vaddeswaram, Andhra Pradesh, India
关键词
Supply chain management; predictive analytics; demand forecasting; inventory management; exploratory data analysis;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Contemporary firms rely heavily on the effectiveness of their supply chain management. Modern supply chains are complicated and unpredictable, and traditional methods frequently find it difficult to adjust to these factors. Increasing supply chain efficiency through improved supplier performance, demand prediction, inventory optimisation, and streamlined logistics processes may be achieved by utilising sophisticated data analytics and machine learning approaches. In order to improve supply chain management efficiency, this study suggests a unique data-driven strategy that makes use of Deep Q-Learning (DQL). The goal is to create optimisation frameworks and prediction models that can support well-informed decision-making and supply chain operational excellence. The deep Q learning technique is thoroughly integrated into supply chain management in this study, which makes it innovative. The suggested framework gives a comprehensive method for tackling the difficulties of contemporary supply chain management by integrating cutting-edge methodologies including demand forecasting, inventory optimisation, supplier performance prediction, and logistics optimisation. Predictive modelling, performance assessment, and data preparation are three of the proposed framework's essential elements. Cleansing and converting raw data to make it easier to analyse is known as data preparation. To create machine learning frameworks for applications like demand forecasting and logistics optimization, predictive modelling uses DQL. The method's efficacy in raising supply chain efficiency is evaluated through performance evaluation and acquired 98.9% accuracy while implementation. Findings show that the suggested DQL-based strategy is beneficial. Demand is precisely predicted using predictive models, which improves inventory control and lowers stockouts. Supply chain efficiencies brought about by DQL-based optimisation algorithms include lower costs and better service quality. Performance assessment measures show notable gains above baseline methods, highlighting the importance of DQL in supply chain management. This study demonstrates how Deep Q-Learning has the ability to completely change supply chain management procedures. In today's dynamic environment, organisations may gain competitive advantage and sustainable development through supply chain operations that are more efficient, agile, and resilient thanks to the incorporation of modern analytical methodologies and data-driven insights.
引用
收藏
页码:672 / 686
页数:15
相关论文
共 50 条
  • [31] Machine learning in project analytics: a data-driven framework and case study
    Shahadat Uddin
    Stephen Ong
    Haohui Lu
    Scientific Reports, 12
  • [32] How does data-driven supply chain analytics capability enhance supply chain agility in the digital era?
    Cui, Li
    Wang, Ziyi
    Liu, Yang
    Cao, Guikun
    INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2024, 277
  • [33] Machine Learning for Proactive Supply Chain Risk Management: Predicting Delays and Enhancing Operational Efficiency
    Rezki, Nisrine
    Mansouri, Mohamed
    MANAGEMENT SYSTEMS IN PRODUCTION ENGINEERING, 2024, 32 (03) : 345 - 356
  • [34] Risks of data-driven technologies in sustainable supply chain management
    Ozkan-Ozen, Yesim Deniz
    Sezer, Deniz
    Ozbiltekin-Pala, Melisa
    Kazancoglu, Yigit
    MANAGEMENT OF ENVIRONMENTAL QUALITY, 2023, 34 (04) : 926 - 942
  • [35] Performance analysis of data-driven sustainable supply chain management
    Gazibey, Yavuz
    Ozkan-Ozen, Yesim Deniz
    Ozturkoglu, Yucel
    INTERNATIONAL JOURNAL OF BUSINESS PERFORMANCE MANAGEMENT, 2024, 25 (05)
  • [36] Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms
    Cheng, Jack C. P.
    Chen, Weiwei
    Chen, Keyu
    Wang, Qian
    AUTOMATION IN CONSTRUCTION, 2020, 112 (112)
  • [37] Data-driven digital transformation in operations and supply chain management
    Spanaki, Konstantina
    Dennehy, Denis
    Papadopoulos, Thanos
    Dubey, Rameshwar
    INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2025, 284
  • [38] WattScale: A Data-driven Approach for Energy Efficiency Analytics of Buildings at Scale
    Iyengar, Srinivasan
    Lee, Stephen
    Irwin, David
    Shenoy, Prashant
    Weil, Benjamin
    ACM/IMS Transactions on Data Science, 2021, 2 (01):
  • [39] Predictive modelling and analytics of students' grades using machine learning algorithms
    Badal, Yudish Teshal
    Sungkur, Roopesh Kevin
    EDUCATION AND INFORMATION TECHNOLOGIES, 2023, 28 (03) : 3027 - 3057
  • [40] Predictive modelling and analytics of students’ grades using machine learning algorithms
    Yudish Teshal Badal
    Roopesh Kevin Sungkur
    Education and Information Technologies, 2023, 28 : 3027 - 3057