Single-Trial Detection and Classification of Event-Related Optical Signals for a Brain-Computer Interface Application

被引:0
|
作者
Chiou, Nicole [1 ]
Guenal, Mehmet [2 ]
Koyejo, Sanmi [1 ]
Perpetuini, David [3 ]
Chiarelli, Antonio Maria [4 ,5 ]
Low, Kathy A. [2 ]
Fabiani, Monica [2 ,6 ]
Gratton, Gabriele [2 ,6 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Univ Illinois Urbana & Champaign, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[3] G Dannunzio Univ Chieti Pescara, Dept Engn & Geol, I-65127 Pescara, Italy
[4] G Dannunzio Univ Chieti Pescara, Dept Neurosci Imaging & Clin Sci, I-66100 Chieti, Italy
[5] G Dannunzio Univ Chieti Pescara, Inst Adv Biomed Technol, I-66100 Chieti, Italy
[6] Univ Illinois, Psychol Dept, Champaign, IL 61820 USA
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 08期
关键词
fast optical signals (FOS); event-related optical signals (EROS); brain-computer interface (BCI); machine learning (ML); deep learning;
D O I
10.3390/bioengineering11080781
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Event-related optical signals (EROS) measure fast modulations in the brain's optical properties related to neuronal activity. EROS offer a high spatial and temporal resolution and can be used for brain-computer interface (BCI) applications. However, the ability to classify single-trial EROS remains unexplored. This study evaluates the performance of neural network methods for single-trial classification of motor response-related EROS. EROS activity was obtained from a high-density recording montage covering the motor cortex during a two-choice reaction time task involving responses with the left or right hand. This study utilized a convolutional neural network (CNN) approach to extract spatiotemporal features from EROS data and perform classification of left and right motor responses. Subject-specific classifiers trained on EROS phase data outperformed those trained on intensity data, reaching an average single-trial classification accuracy of around 63%. Removing low-frequency noise from intensity data is critical for achieving discriminative classification results with this measure. Our results indicate that deep learning with high-spatial-resolution signals, such as EROS, can be successfully applied to single-trial classifications.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Automatic Denoising of Single-Trial Event-Related PotentialsA MATLAB Application
    Mohamed Amine Boudiaf
    Moncef Benkherrat
    Djemil Messadeg
    Mahmoud Boudiaf
    Neuroinformatics, 2021, 19 : 547 - 550
  • [22] Automatic Denoising of Single-Trial Event-Related Potentials A MATLAB Application
    Boudiaf, Mohamed Amine
    Benkherrat, Moncef
    Messadeg, Djemil
    Boudiaf, Mahmoud
    NEUROINFORMATICS, 2021, 19 (03) : 547 - 550
  • [23] An automated and fast approach to detect single-trial visual evoked potentials with application to brain-computer interface
    Tu, Yiheng
    Hung, Yeung Sam
    Hu, Li
    Huang, Gan
    Hu, Yong
    Zhang, Zhiguo
    CLINICAL NEUROPHYSIOLOGY, 2014, 125 (12) : 2372 - 2383
  • [24] Single-trial Event-Related Potential Emotional Classification Based on Compressed Sensing
    Zhang, Xueying
    Li, Fenglian
    Chang, Jiang
    Huang, Lixia
    Sun, Ying
    Duan, Shufei
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON ORANGE TECHNOLOGIES (ICOT), 2017, : 172 - 175
  • [25] Toward shift invariant detection of event-related potentials in non-invasive brain-computer interface
    Cecotti, Hubert
    PATTERN RECOGNITION LETTERS, 2015, 66 : 127 - 134
  • [26] Pain and single-trial somatosensory event-related potentials
    Van Rijn, C. M.
    Van Den Broeke, E. N.
    Wilder-Smith, O. H. G.
    Coenen, A. M. L.
    Quiroga, R. Quian
    Jongstma, M. L. A.
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2008, 69 (03) : 175 - 176
  • [27] Single-trial event-related potentials to significant stimuli
    Rushby, Jacqueline A.
    Barry, Robert J.
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2009, 74 (02) : 120 - 131
  • [28] Analysis and visualization of single-trial event-related potentials
    Jung, TP
    Makeig, S
    Westerfield, M
    Townsend, J
    Courchesne, E
    Sejnowski, TJ
    HUMAN BRAIN MAPPING, 2001, 14 (03) : 166 - 185
  • [29] Single-trial event-related potentials with wavelet denoising
    Quiroga, RQ
    Garcia, H
    CLINICAL NEUROPHYSIOLOGY, 2003, 114 (02) : 376 - 390
  • [30] Analyzing and visualizing single-trial event-related potentials
    Jung, TP
    Makeig, S
    Westerfield, M
    Townsend, J
    Courchesne, E
    Sejnowski, TJ
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 11, 1999, 11 : 118 - 124