Drug-target interaction prediction with collaborative contrastive learning and adaptive self-paced sampling strategy

被引:2
|
作者
Tian, Zhen [1 ,2 ]
Yu, Yue [1 ,2 ]
Ni, Fengming [3 ]
Zou, Quan [2 ]
机构
[1] Zhengzhou Univ, Sch Comp & Artificial Intelligence, Zhengzhou 450001, Henan, Peoples R China
[2] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Quzhou, Quzhou, Peoples R China
[3] Jilin Univ, Dept Gastroenterol, Hosp 1, Changchun 130021, Peoples R China
基金
中国国家自然科学基金;
关键词
Drug-Target Interaction; Contrastive Learning; Self-Paced Sampling; NETWORK;
D O I
10.1186/s12915-024-02012-x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
BackgroundDrug-target interaction (DTI) prediction plays a pivotal role in drug discovery and drug repositioning, enabling the identification of potential drug candidates. However, most previous approaches often do not fully utilize the complementary relationships among multiple biological networks, which limits their ability to learn more consistent representations. Additionally, the selection strategy of negative samples significantly affects the performance of contrastive learning methods.ResultsIn this study, we propose CCL-ASPS, a novel deep learning model that incorporates Collaborative Contrastive Learning (CCL) and Adaptive Self-Paced Sampling strategy (ASPS) for drug-target interaction prediction. CCL-ASPS leverages multiple networks to learn the fused embeddings of drugs and targets, ensuring their consistent representations from individual networks. Furthermore, ASPS dynamically selects more informative negative sample pairs for contrastive learning. Experiment results on the established dataset demonstrate that CCL-ASPS achieves significant improvements compared to current state-of-the-art methods. Moreover, ablation experiments confirm the contributions of the proposed CCL and ASPS strategies.ConclusionsBy integrating Collaborative Contrastive Learning and Adaptive Self-Paced Sampling, the proposed CCL-ASPS effectively addresses the limitations of previous methods. This study demonstrates that CCL-ASPS achieves notable improvements in DTI predictive performance compared to current state-of-the-art approaches. The case study and cold start experiments further illustrate the capability of CCL-ASPS to effectively predict previously unknown DTI, potentially facilitating the identification of new drug-target interactions.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Adaptive Practicing Design for Self-paced Online Learning
    Yan, Hongxin
    Ives, Cindy
    Lin, Fuhua
    29TH INTERNATIONAL CONFERENCE ON COMPUTERS IN EDUCATION (ICCE 2021), VOL II, 2021, : 765 - 768
  • [32] SSLDTI: A novel method for drug-target interaction prediction based on self-supervised learning
    Liu, Zhixian
    Chen, Qingfeng
    Lan, Wei
    Lu, Huihui
    Zhang, Shichao
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 149
  • [33] Adaptive sampling using self-paced learning for imbalanced cancer data pre-diagnosis
    Wang, Qingyong
    Zhou, Yun
    Zhang, Weiming
    Tang, Zhangui
    Chen, Xiaojing
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 152
  • [34] Drug-target interaction prediction with a deep-learning-based model
    Xie, Lingwei
    Zhang, Zhongnan
    He, Song
    Bo, Xiaochen
    Song, Xinyu
    2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 469 - 476
  • [35] Drug-target Interaction Prediction via Multiple Output Deep Learning
    Ye, Qing
    Zhang, Xiaolong
    Lin, Xiaoli
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 507 - 510
  • [36] Drug-target interaction prediction by learning from local information and neighbors
    Mei, Jian-Ping
    Kwoh, Chee-Keong
    Yang, Peng
    Li, Xiao-Li
    Zheng, Jie
    BIOINFORMATICS, 2013, 29 (02) : 238 - 245
  • [37] NeuRank: learning to rank with neural networks for drug-target interaction prediction
    Wu, Xiujin
    Zeng, Wenhua
    Lin, Fan
    Zhou, Xiuze
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [38] Drug-target interaction prediction using ensemble learning and dimensionality reduction
    Ezzat, Ali
    Wu, Min
    Li, Xiao-Li
    Kwoh, Chee-Keong
    METHODS, 2017, 129 : 81 - 88
  • [39] DrugormerDTI: Drug Graphormer for drug-target interaction prediction
    Hu, Jiayue
    Yu, Wang
    Pang, Chao
    Jin, Junru
    Truong Pham, Nhat
    Manavalan, Balachandran
    Wei, Leyi
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 161
  • [40] AMGDTI: drug-target interaction prediction based on adaptive meta-graph learning in heterogeneous network
    Su, Yansen
    Hu, Zhiyang
    Wang, Fei
    Bin, Yannan
    Zheng, Chunhou
    Li, Haitao
    Chen, Haowen
    Zeng, Xiangxiang
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (01)