Non-equilibrium transport in polymer mixed ionic-electronic conductors at ultrahigh charge densities

被引:7
|
作者
Tjhe, Dionisius H. L. [1 ]
Ren, Xinglong [1 ]
Jacobs, Ian E. [1 ]
D'Avino, Gabriele [2 ]
Mustafa, Tarig B. E. [1 ,3 ]
Marsh, Thomas G. [1 ]
Zhang, Lu [1 ]
Fu, Yao [3 ]
Mansour, Ahmed E. [4 ,5 ,6 ]
Opitz, Andreas [4 ,5 ,6 ]
Huang, Yuxuan [1 ]
Zhu, Wenjin [1 ]
Unal, Ahmet Hamdi [1 ]
Hoek, Sebastiaan [1 ]
Lemaur, Vincent [7 ]
Quarti, Claudio [7 ]
He, Qiao [8 ,9 ]
Lee, Jin-Kyun [10 ]
McCulloch, Iain [11 ]
Heeney, Martin [8 ,9 ]
Koch, Norbert [4 ,5 ,6 ]
Grey, Clare P. [3 ]
Beljonne, David [7 ]
Fratini, Simone [2 ]
Sirringhaus, Henning [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Cambridge, England
[2] Grenoble Alpes Univ, Inst Neel, CNRS, Grenoble INP, Grenoble, France
[3] Univ Cambridge, Dept Chem, Cambridge, England
[4] Humboldt Univ, Inst Phys, Berlin, Germany
[5] Humboldt Univ, Ctr Sci Mat Berlin, Berlin, Germany
[6] Helmholtz Zentrum Berlin Mat & Energie, Berlin, Germany
[7] Univ Mons, Lab Chem Novel Mat, Mons, Belgium
[8] Imperial Coll London, Dept Chem, London, England
[9] Imperial Coll London, Ctr Processable Elect, London, England
[10] Inha Univ, Dept Polymer Sci & Engn, Incheon, South Korea
[11] Univ Oxford, Dept Chem, Oxford, England
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
CONDUCTIVITY; DYNAMICS; DISORDER;
D O I
10.1038/s41563-024-01953-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Conducting polymers are mixed ionic-electronic conductors that are emerging candidates for neuromorphic computing, bioelectronics and thermoelectrics. However, fundamental aspects of their many-body correlated electron-ion transport physics remain poorly understood. Here we show that in p-type organic electrochemical transistors it is possible to remove all of the electrons from the valence band and even access deeper bands without degradation. By adding a second, field-effect gate electrode, additional electrons or holes can be injected at set doping states. Under conditions where the counterions are unable to equilibrate in response to field-induced changes in the electronic carrier density, we observe surprising, non-equilibrium transport signatures that provide unique insights into the interaction-driven formation of a frozen, soft Coulomb gap in the density of states. Our work identifies new strategies for substantially enhancing the transport properties of conducting polymers by exploiting non-equilibrium states in the coupled system of electronic charges and counterions. Mixed ionic-electronic transport in conducting polymers remains poorly understood. Here the authors observe non-equilibrium electronic transport when counterions are unable to equilibrate in response to gate-injected electronic carriers.
引用
收藏
页码:1712 / 1719
页数:20
相关论文
共 50 条
  • [41] Surface modification and characterization of perovskite-type mixed ionic-electronic conductors
    Lee, S
    Shin, TH
    Lee, KS
    Han, IS
    Seo, DW
    Hong, KS
    Woo, SK
    DESIGNING, PROCESSING AND PROPERTIES OF ADVANCED ENGINEERING MATERIALS, PTS 1 AND 2, 2004, 449-4 : 1297 - 1300
  • [42] Mixed Ionic-Electronic Conduction in Binary Polymer Nanoparticle Assemblies
    Renna, Lawrence A.
    Lenef, Julia D.
    Bag, Monojit
    Venkataraman, D.
    ADVANCED MATERIALS INTERFACES, 2017, 4 (20):
  • [43] Role of solitons in non-equilibrium electronic transport through a polymer chain
    Wang, Jia
    Yang, Yue
    Yao, Yao
    Wu, Chang-Qin
    EPL, 2013, 102 (06)
  • [44] Complete representation of isothermal mass and charge transport properties of mixed ionic electronic conductors
    Yoo, H-I
    Kim, H. -S.
    SOLID STATE IONICS, 2012, 225 : 166 - 171
  • [45] Electrochemical Doping in Ordered and Disordered Domains of Organic Mixed Ionic-Electronic Conductors
    Cavassin, Priscila
    Holzer, Isabelle
    Tsokkou, Demetra
    Bardagot, Olivier
    Rehault, Julien
    Banerji, Natalie
    ADVANCED MATERIALS, 2023, 35 (35)
  • [46] Electrochemomechanics with flexoelectricity and modelling of electrochemical strain microscopy in mixed ionic-electronic conductors
    Yu, Pengfei
    Hu, Shuling
    Shen, Shengping
    JOURNAL OF APPLIED PHYSICS, 2016, 120 (06)
  • [47] Direct quantification of ion composition and mobility in organic mixed ionic-electronic conductors
    Wu, Ruiheng
    Ji, Xudong
    Ma, Qing
    Paulsen, Bryan D.
    Tropp, Joshua
    Rivnay, Jonathan
    SCIENCE ADVANCES, 2024, 10 (17):
  • [48] Organic Mixed Ionic-Electronic Conductors for Bioelectronic Sensors: Materials and Operation Mechanisms
    Kim, Hyunwook
    Won, Yousang
    Song, Hyun Woo
    Kwon, Yejin
    Jun, Minsang
    Oh, Joon Hak
    ADVANCED SCIENCE, 2024, 11 (27)
  • [49] The hierarchical structure of organic mixed ionic-electronic conductors and its evolution in water
    Tsarfati, Yael
    Bustillo, Karen C.
    Savitzky, Benjamin H.
    Balhorn, Luke
    Quill, Tyler J.
    Marks, Adam
    Donohue, Jennifer
    Zeltmann, Steven E.
    Takacs, Christopher J.
    Giovannitti, Alexander
    Mcculloch, Iain
    Ophus, Colin
    Minor, Andrew M.
    Salleo, Alberto
    NATURE MATERIALS, 2025, 24 (01) : 101 - 108
  • [50] Emerging semiconductor ionic materials tailored by mixed ionic-electronic conductors for advanced fuel cells
    Bibi, Bushra
    Nazar, Atif
    Zhu, Bin
    Yang, Fan
    Yousaf, Muhammad
    Raza, Rizwan
    Shah, M. A. K. Yousaf
    Kim, Jung-Sik
    Afzal, Muhammad
    Lei, Yongpeng
    Jing, Yifu
    Lund, Peter
    Yun, Sining
    ADVANCED POWDER MATERIALS, 2024, 3 (06):