Combination therapy synergism prediction for virus treatment using machine learning models

被引:1
|
作者
Majidifar, Shayan [1 ]
Zabihian, Arash [2 ]
Hooshmand, Mohsen [1 ]
机构
[1] Inst Adv Studies Basic Sci IASBS, Dept Comp Sci & Informat Technol, Zanjan, Iran
[2] Kimia Zist Parsian Pharmaceut Co, Dept QA, Zanjan, Iran
来源
PLOS ONE | 2024年 / 19卷 / 09期
基金
美国国家科学基金会;
关键词
GENOME SEQUENCE; STONE-AGE; ARTIFACTS; CAVE; AURIGNACIAN; TURKEY;
D O I
10.1371/journal.pone.0309733
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Combining different drugs synergistically is an essential aspect of developing effective treatments. Although there is a plethora of research on computational prediction for new combination therapies, there is limited to no research on combination therapies in the treatment of viral diseases. This paper proposes AI-based models for predicting novel antiviral combinations to treat virus diseases synergistically. To do this, we assembled a comprehensive dataset comprising information on viral strains, drug compounds, and their known interactions. As far as we know, this is the first dataset and learning model on combination therapy for viruses. Our proposal includes using a random forest model, an SVM model, and a deep model to train viral combination therapy. The machine learning models showed the highest performance, and the predicted values were validated by a t-test, indicating the effectiveness of the proposed methods. One of the predicted combinations of acyclovir and ribavirin has been experimentally confirmed to have a synergistic antiviral effect against herpes simplex type-1 virus, as described in the literature.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Cost Prediction for Roads Construction using Machine Learning Models
    Abed, Yasamin Ghadbhan
    Hasan, Taha Mohammed
    Zehawi, Raquim Nihad
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2022, 13 (10) : 927 - 936
  • [22] Novel Prediction Models for Myelodysplastic Syndromes Using Machine Learning
    Taoka, Kazuki
    Tsubosaka, Ayumu
    Nakazaki, Kumi
    Honda, Akira
    Maki, Hiroaki
    Kurokawa, Mineo
    BLOOD, 2021, 138 : 1939 - +
  • [23] Refractive index prediction models for polymers using machine learning
    Lightstone, Jordan P.
    Chen, Lihua
    Kim, Chiho
    Batra, Rohit
    Ramprasad, Rampi
    JOURNAL OF APPLIED PHYSICS, 2020, 127 (21)
  • [24] Prediction of SACCOS Failure in Tanzania using Machine Learning Models
    Magashi, Cosmas H.
    Agbinya, Johnson
    Sam, Anael
    Mbelwa, Jimmy
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2024, 14 (01) : 12887 - 12891
  • [25] Prediction of Soil Compaction Parameters Using Machine Learning Models
    Li, Bingyi
    You, Zixuan
    Ni, Kaiwei
    Wang, Yuexiang
    APPLIED SCIENCES-BASEL, 2024, 14 (07):
  • [26] Earth fissure hazard prediction using machine learning models
    Choubin, Bahram
    Mosavi, Amir
    Alamdarloo, Esmail Heydari
    Hosseini, Farzaneh Sajedi
    Shamshirband, Shahaboddin
    Dashtekian, Kazem
    Ghamisi, Pedram
    ENVIRONMENTAL RESEARCH, 2019, 179
  • [27] Cloud Client Prediction Models Using Machine Learning Techniques
    Ajila, Samuel A.
    Bankole, Akindele A.
    2013 IEEE 37TH ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), 2013, : 134 - 142
  • [28] Eye state Prediction using Ensembled Machine Learning Models
    Singla, Dipali
    Rana, Prashant Singh
    2016 INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT), VOL 2, 2016, : 246 - 250
  • [29] Air Quality Prediction System Using Machine Learning Models
    Chaturvedi, Pooja
    WATER AIR AND SOIL POLLUTION, 2024, 235 (09):
  • [30] Price Prediction Using LSTM Based Machine Learning Models
    Rahman, Md. Hafizur
    Nahid, Sayeda Islam
    Al Fahad, Ibna Huda
    Nahid, Faysal Mahmud
    Khan, Mohammad Monirujjaman
    2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference, IEMCON 2021, 2021, : 453 - 459