Improving decryption quality of optical chaos communication using neural networks

被引:4
|
作者
Fan, Xiaoqi [1 ,2 ]
Mao, Xiaoxin [1 ,2 ]
Wang, Longsheng [1 ,2 ]
Fu, Songnian [3 ,4 ,5 ]
Wang, Anbang [3 ,4 ,5 ]
Wang, Yuncai [3 ,4 ,5 ]
机构
[1] Taiyuan Univ Technol, Key Lab Adv Transducers & Intelligent Control Syst, Minist Educ, Taiyuan 030024, Peoples R China
[2] Taiyuan Univ Technol, Coll Elect Informat & Opt Engn, Taiyuan 030024, Peoples R China
[3] Guangdong Univ Technol, Key Lab Photon Technol Integrated Sensing & Commun, Minist Educ, Guangzhou 510006, Peoples R China
[4] Guangdong Univ Technol, Guangdong Prov Key Lab Informat Photon Technol, Guangzhou 510006, Peoples R China
[5] Guangdong Univ Technol, Inst Adv Photon Technol, Sch Informat Engn, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
COMPENSATION; GBIT/S; LASER;
D O I
10.1364/OL.531834
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical chaos communication is a promising secure transmission technique because of the advantages of high speed and compatibility with existing fiber-optic systems. The deterioration of chaotic synchronization quality caused by fiber optic transmission impairments affects the quality of recovery of information, especially high-order modulated signals. Here, we demonstrate that the use of a convolutional neural network (CNN) with a bidirectional long short-term memory (LSTM) layer can reduce the decryption BER in an optical chaos communication system based on common- signal-induced semiconductor laser synchronization. The performance of a neural network is investigated as a function of network parameters and chaos synchronization coefficient. Experimental results show that the BER of 16-ary quadrature-amplitude-modulation (16QAM) signal after 100-km fiber transmission is decreased from 3.05 x 10-2 to below the soft-decision forward-error-correction (SD-FEC) threshold of 2.0 x 10-2. (c) 2024 Optica Publishing Group. All rights, including for text and data mining (TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.
引用
收藏
页码:4445 / 4448
页数:4
相关论文
共 50 条
  • [41] Information processing using dynamical chaos: neural networks implementation
    Russian Acad of Sciences, Moscow, Russia
    IEEE Trans Neural Networks, 2 (290-299):
  • [42] Using Neural Networks for Quality Management
    Jaber, Mohamad
    Combaz, Jacques
    Strus, Loic
    Fernandez, Jean-Claude
    2008 IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION, PROCEEDINGS, 2008, : 1441 - 1448
  • [43] Optical Image Encryption and Decryption Considering Wireless Communication Channels
    Cho, Myungjin
    Lee, In-Ho
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2014, 10 (02): : 215 - 222
  • [44] Chaos and transient chaos in simple Hopfield neural networks
    Yang, XS
    Yuan, Q
    NEUROCOMPUTING, 2005, 69 (1-3) : 232 - 241
  • [45] Applying Neural Networks in Optical Communication Systems: Possible Pitfalls
    Eriksson, Tobias A.
    Bulow, Henning
    Leven, Andreas
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2017, 29 (23) : 2091 - 2094
  • [46] OPTIMIZATION WITH NEURAL NETWORKS - A RECIPE FOR IMPROVING CONVERGENCE AND SOLUTION QUALITY
    JAYADEVA
    BHAUMIK, B
    BIOLOGICAL CYBERNETICS, 1992, 67 (05) : 445 - 449
  • [47] Improving Quality of Long-Term Bond Price Prediction Using Artificial Neural Networks
    Verner, Robert
    Tkac, Michal, Sr.
    Tkac, Michal, Jr.
    QUALITY INNOVATION PROSPERITY-KVALITA INOVACIA PROSPERITA, 2021, 25 (01): : 103 - 123
  • [48] Poster Abstract: Improving image reconstruction quality in ultrasonic tomography using deep neural networks
    Kulisz, Monika
    Klosowski, Grzegorz
    Rymarczyk, Tomasz
    Niderla, Konrad
    Bednarczuk, Piotr
    PROCEEDINGS OF THE 21ST ACM CONFERENCE ON EMBEDDED NETWORKED SENSOR SYSTEMS, SENSYS 2023, 2023, : 520 - 521
  • [49] Forecasting PM10 concentrations using neural networks and system for improving air quality
    Dedovic, Maja Muftic
    Avdakovic, Samir
    Turkovic, Irfan
    Dautbasic, Nedis
    Konjic, Tatjana
    2016 XI INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (BIHTEL), 2016,
  • [50] Chaos encrypted optical communication system
    Annovazzi-Lodi, V.
    Antonelli, C.
    Aromataris, G.
    Benedetti, M.
    Guglielmucci, M.
    Mecozzi, A.
    Merlo, S.
    Santagiustina, M.
    Ursini, L.
    FIBER AND INTEGRATED OPTICS, 2008, 27 (04) : 308 - 316