Dual single-atom sites coupled with graphene-encapsulated core-shell Fe-Cu nanoalloy for boosting the oxygen reduction reaction

被引:1
|
作者
Srinivas, Katam [1 ]
Chen, Zhuo [2 ]
Chen, Anran [3 ]
Huang, He [1 ]
Yang, Chengtao [1 ]
Wang, Fei [4 ,5 ]
Zhu, Ming-qiang [2 ]
Chen, Yuanfu [1 ]
机构
[1] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Sch Integrated Circuit Sci & Engn, Huzhou 313001, Zhejiang, Peoples R China
[2] Northwest A&F Univ, Coll Mech & Elect Engn, Yangling 712100, Shaanxi, Peoples R China
[3] Yunnan Univ, Sch Mat & Energy, Kunming 650091, Yunnan, Peoples R China
[4] Kunming Univ Sci & Technol, Fac Mat Sci & Engn, Kunming 650093, Peoples R China
[5] Sichuan Univ, Coll Mat Sci & Engn, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
NITROGEN-DOPED GRAPHENE; CARBON NANOFIBERS; NANOPARTICLES; ELECTROCATALYSTS; CATALYSTS;
D O I
10.1039/d4ta05015k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Replacing platinum-based electrocatalysts with iron single-atom catalysts (Fe-N4-C) for the oxygen reduction reaction (ORR) remains challenging due to the symmetric electronic structure of atomically dispersed Fe-N4 sites and sluggish kinetics. To address this issue, we introduce Cu-Nx sites and graphene-encapsulated core-shell Fe-Cu nanoalloy (FeCu@G) particles into the Fe-Nx site surroundings through the self-assembly and pyrolysis of a metal-organic framework (MOF). This strategy leverages synergistic interactions with the associated species to modify the uniform electronic structure of Fe single-atom sites, thereby enhancing oxygen-adsorption/desorption kinetics. Density functional theory (DFT) calculations reveal that the incorporation of Cu-Nx sites and FeCu@G nanoalloy particles significantly alters the electronic structure of Fe-Nx sites, leading to improved ORR activity. Consequently, the optimized FeCu-DSAs@CNT, comprising dual single-atom sites (DSAs: Fe-Nx and Cu-Nx) and FeCu@G nanoalloy within MOF-derived nitrogen-doped carbon nanotubes (CNTs), exhibits a significantly improved half-wave potential (E1/2 = 0.91 V) and feasible ORR kinetics (Tafel slope = 48.15 mV dec-1), surpassing the Pt/C benchmark (E1/2 = 0.847 V and Tafel slope = 56.76 mV dec-1). Notably, FeCu-DSAs@CNT shows a 58 mV more positive E1/2 compared to monometallic Fe-SAs@CNT, attributed to synergistic interactions with Cu species. Moreover, it demonstrates excellent power density, specific capacity, and cycling stability in a lab-made zinc-air battery, outpacing the Pt/C-battery. This study addresses gaps in understanding Fe-Nx site interactions with associated species, providing valuable insights for the advancement of Fe-Nx-C electrocatalysts. The strategic integration of Cu-Nx sites and graphene-encapsulated Fe-Cu core-shell nanoalloys near Fe-Nx sites significantly enhances the performance of Fe single-atom catalysts for the oxygen reduction reaction.
引用
收藏
页码:28398 / 28413
页数:16
相关论文
共 50 条
  • [21] Engineering dual metal single-atom sites with the nitrogen-coordinated nonprecious catalyst for oxygen reduction reaction (ORR) in acidic electrolyte
    Gharibi, Hussein
    Dalir, Nima
    Jafari, Maryam
    Parnian, Mohammad Javad
    Zhiani, Mohammad
    APPLIED SURFACE SCIENCE, 2022, 572
  • [22] Meso/Microporous Single-Atom Catalysts Featuring Curved Fe-N4 Sites Boost the Oxygen Reduction Reaction Activity
    Yu, Ying
    Wang, Yian
    Yang, Fei
    Feng, Dong
    Yang, Mingyang
    Xie, Peng-Fei
    Zhu, Yuanzhi
    Shao, Minhua
    Mei, Yi
    Li, Jin-Cheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024,
  • [23] Design and Preparation of Fe-N5 Catalytic Sites in Single-Atom Catalysts for Enhancing the Oxygen Reduction Reaction in Fuel Cells
    Zhao, Ye-Min
    Zhang, Peng-Cheng
    Xu, Chao
    Zhou, Xin-You
    Liao, Li-Mei
    Wei, Ping-Jie
    Liu, Ershuai
    Chen, Hengquan
    He, Qinggang
    Liu, Jin-Gang
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (15) : 17334 - 17342
  • [24] CuAg@Ag Core-Shell Nanostructure Encapsulated by N-Doped Graphene as a High-Performance Catalyst for Oxygen Reduction Reaction
    Tran Duy Thanh
    Nguyen Dinh Chuong
    Hoa Van Hien
    Kim, Nam Hoon
    Lee, Joong Hee
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (05) : 4672 - 4681
  • [25] Regulating the Electronic Configuration of Single-Atom Catalysts with Fe-N5 Sites via Environmental Sulfur Atom Doping for an Enhanced Oxygen Reduction Reaction
    Yang, Kun-Zu
    Xu, Chao
    Guo, Peng-Peng
    Zhao, Ye-Min
    Chi, Hua-Min
    Xu, Ying
    Wei, Ping-Jie
    Zheng, Tianlong
    He, Qinggang
    Ren, Qizhi
    Liu, Jin-Gang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (29): : 11033 - 11043
  • [26] Designing Efficient Dual-Metal Single-Atom Electrocatalyst TMZnN6 (TM = Mn, Fe, Co, Ni, Cu, Zn) for Oxygen Reduction Reaction
    Cao, Lujie
    Shao, Yangfan
    Pan, Hui
    Lu, Zhouguang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (21): : 11301 - 11307
  • [27] Creating Asymmetric Fe-N3C-N Sites in Single-Atom Catalysts Boosts Catalytic Performance for Oxygen Reduction Reaction
    Xu, Chao
    Li, Xuewen
    Guo, Peng-Peng
    Yang, Kun-Zu
    Zhao, Ye-Min
    Chi, Hua-Min
    Xu, Ying
    Wei, Ping-Jie
    Wang, Zhi-Qiang
    Xu, Qing
    Liu, Jin-Gang
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (29) : 37927 - 37937
  • [28] MIL-101-Derived Mesoporous Carbon Supporting Highly Exposed Fe Single-Atom Sites as Efficient Oxygen Reduction Reaction Catalysts
    Xie, Xiaoying
    Peng, Lishan
    Yang, Hongzhou
    Waterhouse, Geoffrey I. N.
    Shang, Lu
    Zhang, Tierui
    ADVANCED MATERIALS, 2021, 33 (23)
  • [29] Altering the spin state of Fe-N-C through ligand field modulation of single-atom sites boosts the oxygen reduction reaction
    Xue, Dongping
    Yuan, Pengfei
    Jiang, Su
    Wei, Yifan
    Zhou, Ying
    Dong, Chung-Li
    Yan, Wenfu
    Mu, Shichun
    Zhang, Jia-Nan
    NANO ENERGY, 2023, 105
  • [30] Core-shell Fe/Fe3C heterostructure@carbon layers anchored on N-doped porous carbon for boosting oxygen reduction reaction
    Yu, Hesheng
    Liu, Dawei
    Srinivas, Katam
    Ma, Fei
    Zhang, Ziheng
    Wang, Mengya
    Wu, Yu
    Wang, Yue
    Li, Xinsheng
    Chen, Yuanfu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 949