Online size Ramsey numbers: Odd cycles vs connected graphs

被引:0
|
作者
Adamski, Grzegorz [1 ]
Bednarska-Bzdega, Malgorzata [1 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & CS, Poznan, Poland
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2024年 / 31卷 / 03期
关键词
PATHS;
D O I
10.37236/11644
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given two graph families H 1 and H 2 , a size Ramsey game is played on the edge set of K N . In every round, Builder selects an edge and Painter colours it red or blue. Builder is trying to force Painter to create a red copy of a graph from H 1 or a blue copy of a graph from H 2 as soon as possible. The online (size) Ramsey number r ( H 1 , H 2 ) is the smallest number of rounds in the game provided Builder and Painter play optimally. We prove that if H 1 is the family of all odd cycles and H 2 is the family of all connected graphs on n vertices and m edges, then r ( H 1 , H 2 ) phi n n + m - 2 phi phi + 1, where phi is the golden ratio, and for n 3, m (n n - 1)2/4 2 / 4 we have r ( H 1 , H 2 ) n + 2m m + O ( root m - n + 1). We also show that r(C3, ( C 3 , P n ) 3n-4 n- 4 for n 3. Asa consequence we get 2.6n-3 . 6 n- 3 ( C 3 , P n ) 3n-4 n- 4 for every n 3.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] On size Ramsey numbers of graphs with bounded degree
    Rödl, V
    Szemerédi, E
    COMBINATORICA, 2000, 20 (02) : 257 - 262
  • [32] On Size Ramsey Numbers of Graphs with Bounded Degree
    Vojtěch Rödl
    Endre Szemerédi
    Combinatorica, 2000, 20 : 257 - 262
  • [33] ONLINE RAMSEY NUMBERS: LONG VERSUS SHORT CYCLES
    Adamski, Grzegorz
    Bednarska-Bzdcega, Malgorzata
    Blavzej, Vaclav
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2024, 38 (04) : 3150 - 3175
  • [34] Online and size anti-Ramsey numbers
    Axenovich, Maria
    Knauer, Kolja
    Stumpp, Judith
    Ueckerdt, Torsten
    JOURNAL OF COMBINATORICS, 2014, 5 (01) : 87 - 114
  • [35] Star-critical Ramsey Numbers of Wheels Versus Odd Cycles
    Yu-chen LIU
    Yao-jun CHEN
    ActaMathematicaeApplicataeSinica, 2022, 38 (04) : 916 - 924
  • [36] Star-critical Ramsey Numbers of Wheels Versus Odd Cycles
    Liu, Yu-chen
    Chen, Yao-jun
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2022, 38 (04): : 916 - 924
  • [37] Star-critical Ramsey Numbers of Wheels Versus Odd Cycles
    Yu-chen Liu
    Yao-jun Chen
    Acta Mathematicae Applicatae Sinica, English Series, 2022, 38 : 916 - 924
  • [38] The ratio of the numbers of odd and even cycles in outerplanar graphs
    Higashitani, Akihiro
    Matsumoto, Naoki
    DISCRETE MATHEMATICS, 2023, 346 (04)
  • [39] On the Ramsey numbers for stars versus connected graphs of order six
    Lortz, Roland
    Mengersen, Ingrid
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 73 : 1 - 24
  • [40] ON GRAPHS WITHOUT 6-CYCLES AND RELATED RAMSEY NUMBERS
    YANG, YS
    ROWLINSON, P
    UTILITAS MATHEMATICA, 1993, 44 : 192 - 196