Diffusion Models-Based Purification for Common Corruptions on Robust 3D Object Detection

被引:2
|
作者
Cai, Mumuxin [1 ]
Wang, Xupeng [2 ]
Sohel, Ferdous [3 ]
Lei, Hang [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610054, Peoples R China
[2] Univ Elect Sci & Technol, Lab Intelligent Collaborat Comp, Chengdu 610054, Peoples R China
[3] Murdoch Univ, Sch Informat Technol, Perth, WA 6150, Australia
基金
中国国家自然科学基金;
关键词
3D object detection; LiDAR scene data; point cloud; diffusion models; defence strategy; adversarial robustness;
D O I
10.3390/s24165440
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
LiDAR sensors have been shown to generate data with various common corruptions, which seriously affect their applications in 3D vision tasks, particularly object detection. At the same time, it has been demonstrated that traditional defense strategies, including adversarial training, are prone to suffering from gradient confusion during training. Moreover, they can only improve their robustness against specific types of data corruption. In this work, we propose LiDARPure, which leverages the powerful generation ability of diffusion models to purify corruption in the LiDAR scene data. By dividing the entire scene into voxels to facilitate the processes of diffusion and reverse diffusion, LiDARPure overcomes challenges induced from adversarial training, such as sparse point clouds in large-scale LiDAR data and gradient confusion. In addition, we utilize the latent geometric features of a scene as a condition to assist the generation of diffusion models. Detailed experiments show that LiDARPure can effectively purify 19 common types of LiDAR data corruption. Further evaluation results demonstrate that it can improve the average precision of 3D object detectors to an extent of 20% in the face of data corruption, much higher than existing defence strategies.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] 3D Object Detection with Pointformer
    Pan, Xuran
    Xia, Zhuofan
    Song, Shiji
    Li, Li Erran
    Huang, Gao
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 7459 - 7468
  • [42] A survey of 3D object detection
    Wei Liang
    Pengfei Xu
    Ling Guo
    Heng Bai
    Yang Zhou
    Feng Chen
    Multimedia Tools and Applications, 2021, 80 : 29617 - 29641
  • [43] Unsupervised Anomaly Detection for Improving Adversarial Robustness of 3D Object Detection Models
    Cai, Mumuxin
    Wang, Xupeng
    Sohel, Ferdous
    Lei, Hang
    ELECTRONICS, 2025, 14 (02):
  • [44] A survey of 3D object detection
    Liang, Wei
    Xu, Pengfei
    Guo, Ling
    Bai, Heng
    Zhou, Yang
    Chen, Feng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (19) : 29617 - 29641
  • [45] Reinforcing LiDAR-Based 3D Object Detection with RGB and 3D Information
    Liu, Wenjian
    Zhou, Yue
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT II, 2019, 11954 : 199 - 209
  • [46] Effective 3D object detection based on detector and tracker
    Nie, Weizhi
    Liu, Anan
    Wang, Zhongyang
    Su, Yuting
    NEUROCOMPUTING, 2016, 215 : 63 - 70
  • [47] Semantic Frustum Based VoxelNet for 3D Object Detection
    Chen, Feng
    Wu, Fei
    Huang, Qinghua
    Feng, Yujian
    Ge, Qi
    Ji, Yimu
    Hu, Chang-Hui
    Jing, Xiao-Yuan
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 7629 - 7634
  • [48] 3D Object Detection Based on Improved Frustum PointNet
    Liu Xunhua
    Sun Shaoyuan
    Gu Lipeng
    Li Xiang
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (20)
  • [49] Detection-based Object Labeling in 3D Scenes
    Lai, Kevin
    Bo, Liefeng
    Ren, Xiaofeng
    Fox, Dieter
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 1330 - 1337
  • [50] Improved 3D Object Detection Method Based on PointPillars
    Han, Zhenguo
    Li, Xu
    Xu, Hengxin
    Song, Hongzheng
    2024 4TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND INTELLIGENT SYSTEMS ENGINEERING, MLISE 2024, 2024, : 163 - 166