Exploring Spatio-temporal Dynamics: A Historical Analysis of Missing Persons Data in Mexico, Revealing Patterns and Trends

被引:0
|
作者
Zagal, Roberto [1 ]
Claramunt, Christophe [2 ]
Hernandez, Carlos [3 ]
Mata, Felix [3 ]
机构
[1] Inst Politecn Nacl, ESCOM IPN, Ciudad De Mexico 07320, Mexico
[2] Naval Acad Res Inst, Lanveoc, France
[3] Inst Politecn Nacl, UPIITA IPN, Ciudad De Mexico 07340, Mexico
关键词
spatio-temporal analysis; missing persons; open data analysis;
D O I
10.1007/978-3-031-60796-7_3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the intricate phenomenon of missing persons, a major problem in Mexico, extending beyond the simple occurrences of disappearances. By developing a historical and spatial data analysis, this research comprehensively examines missing person data from open, official, and social media sources. We apply a data mining framework based on digital media and openly accessible government databases to characterize and visually represent crimes such as enforced disappearances along the temporal and spatial dimensions. The data analysis methodology takes a comprehensive approach, segmenting data by age, sex, nationality, geographic location, and period. This segmentation unveils patterns in space and time, thus contributing to a better understanding of the factors influencing missing person phenomena and valuable insights into the dynamics of missing person incidents that have impacted many states and regions in Mexico over the past decade.
引用
收藏
页码:41 / 52
页数:12
相关论文
共 50 条
  • [31] Spatio-temporal filling of missing points in geophysical data sets
    Kondrashov, D.
    Ghil, M.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2006, 13 (02) : 151 - 159
  • [32] Spatio-temporal dynamics of reaction-diffusion patterns
    Fiedler, B
    Scheel, A
    TRENDS IN NONLINEAR ANALYSIS, 2003, : 23 - 152
  • [33] Accurate spatio-temporal reconstruction of missing data in dynamic scenes
    Favorskaya, Margarita
    Damov, Mikhail
    Zotin, Alexander
    PATTERN RECOGNITION LETTERS, 2013, 34 (14) : 1694 - 1700
  • [34] A Recursive Method for Estimating Missing Data in Spatio-Temporal Applications
    Grover, Abhishek
    Lall, Brejesh
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (04) : 2714 - 2723
  • [35] Predicting Missing Values in Spatio-Temporal Remote Sensing Data
    Gerber, Florian
    de Jong, Rogier
    Schaepman, Michael E.
    Schaepman-Strub, Gabriela
    Furrer, Reinhard
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (05): : 2841 - 2853
  • [36] Controlling optical chaos, spatio-temporal dynamics, and patterns
    Illing, Lucas
    Gauthier, Daniel J.
    Roy, Rajarshi
    ADVANCES IN ATOMIC MOLECULAR AND OPTICAL PHYSICS, VOL 54, 2007, 54 : 615 - 697
  • [37] Network Analysis Using Spatio-Temporal Patterns
    Miranda, Gisele H. B.
    Machicao, Jeaneth
    Bruno, Odemir M.
    5TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES (IC-MSQUARE 2016), 2016, 738
  • [38] Dealing with Multiple Source Spatio-temporal Data in Urban Dynamics Analysis
    Peixoto, Joao
    Moreira, Adriano
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2012, PT II, 2012, 7334 : 450 - 465
  • [39] Spatio-Temporal Analysis of Historical and Future Climate Data in the Texas High Plains
    Chen, Yong
    Marek, Gary W.
    Marek, Thomas H.
    Porter, Dana O.
    Moorhead, Jerry E.
    Wang, Qingyu
    Heflin, Kevin R.
    Brauer, David K.
    SUSTAINABILITY, 2020, 12 (15)
  • [40] Patterns of low birth weight in greater Mexico City: A Bayesian spatio-temporal analysis
    Lome-Hurtado, Alejandro
    Li, Guangquan
    Touza-Montero, Julia
    White, Piran C. L.
    APPLIED GEOGRAPHY, 2021, 134