Probabilistic net load forecasting based on sparse variational Gaussian process regression

被引:0
|
作者
Feng, Wentao [1 ]
Deng, Bingyan [1 ]
Chen, Tailong [1 ]
Zhang, Ziwen [1 ]
Fu, Yuheng [1 ]
Zheng, Yanxi [1 ]
Zhang, Le [1 ]
Jing, Zhiyuan [2 ]
机构
[1] State Grid Sichuan Informat & Telecommun Co, Chengdu, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu, Peoples R China
来源
关键词
net load forecasting; power system; Gaussian process; uncertainties; probabilistic forecasting; NEURAL-NETWORK;
D O I
10.3389/fenrg.2024.1429241
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The integration of stochastic and intermittent distributed PVs brings great challenges for power system operation. Precise net load forecasting performs a critical factor in dependable operation and dispensing. An approach to probabilistic net load prediction is introduced for sparse variant Gaussian process based algorithms. The forecasting of the net load is transferred to a regression problem and solved by the sparse variational Gaussian process (SVPG) method to provide uncertainty quantification results. The proposed method can capture the uncertainties caused by the customer and PVs and provide effective inductive reasoning. The results obtained using real-world data show that the proposed method outperforms other best-of-breed algorithms.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Variational Tobit Gaussian Process Regression
    Basson, Marno
    Louw, Tobias M. M.
    Smith, Theresa R. R.
    STATISTICS AND COMPUTING, 2023, 33 (03)
  • [32] Sparse Additive Gaussian Process Regression
    Luo, Hengrui
    Nattino, Giovanni
    Pratola, Matthew T.
    Journal of Machine Learning Research, 2022, 23
  • [33] Sparse Additive Gaussian Process Regression
    Luo, Hengrui
    Nattino, Giovanni
    Pratola, Matthew T.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [34] Sparse Spectrum Gaussian Process Regression
    Lazaro-Gredilla, Miguel
    Quinonero-Candela, Joaquin
    Rasmussen, Carl Edward
    Figueiras-Vidal, Anibal R.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 1865 - 1881
  • [35] Sparse greedy Gaussian process regression
    Smola, AJ
    Bartlett, P
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 619 - 625
  • [36] Pointwise uncertainty quantification for sparse variational Gaussian process regression with a Brownian motion prior
    Travis, Luke
    Ray, Kolyan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [37] Robust Deep Gaussian Process-Based Probabilistic Electrical Load Forecasting Against Anomalous Events
    Cao, Di
    Zhao, Junbo
    Hu, Weihao
    Zhang, Yingchen
    Liao, Qishu
    Chen, Zhe
    Blaabjerg, Frede
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (02) : 1142 - 1153
  • [38] A Distributed Variational Inference Framework for Unifying Parallel Sparse Gaussian Process Regression Models
    Trong Nghia Hoang
    Quang Minh Hoang
    Low, Bryan Kian Hsiang
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [39] Convergence of sparse variational inference in gaussian processes regression
    Burt, David R.
    Rasmussen, Carl Edward
    Van Der Wilk, Mark
    Journal of Machine Learning Research, 2020, 21
  • [40] Convergence of Sparse Variational Inference in Gaussian Processes Regression
    Burt, David R.
    Rasmussen, Carl Edward
    van der Wilk, Mark
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21