Probabilistic net load forecasting based on sparse variational Gaussian process regression

被引:0
|
作者
Feng, Wentao [1 ]
Deng, Bingyan [1 ]
Chen, Tailong [1 ]
Zhang, Ziwen [1 ]
Fu, Yuheng [1 ]
Zheng, Yanxi [1 ]
Zhang, Le [1 ]
Jing, Zhiyuan [2 ]
机构
[1] State Grid Sichuan Informat & Telecommun Co, Chengdu, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu, Peoples R China
来源
关键词
net load forecasting; power system; Gaussian process; uncertainties; probabilistic forecasting; NEURAL-NETWORK;
D O I
10.3389/fenrg.2024.1429241
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The integration of stochastic and intermittent distributed PVs brings great challenges for power system operation. Precise net load forecasting performs a critical factor in dependable operation and dispensing. An approach to probabilistic net load prediction is introduced for sparse variant Gaussian process based algorithms. The forecasting of the net load is transferred to a regression problem and solved by the sparse variational Gaussian process (SVPG) method to provide uncertainty quantification results. The proposed method can capture the uncertainties caused by the customer and PVs and provide effective inductive reasoning. The results obtained using real-world data show that the proposed method outperforms other best-of-breed algorithms.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Sparse Variational Gaussian Process Based Day-Ahead Probabilistic Wind Power Forecasting
    Wen, Honglin
    Ma, Jinghuan
    Gu, Jie
    Yuan, Lyuzerui
    Jin, Zhijian
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2022, 13 (02) : 957 - 970
  • [2] Incremental Variational Sparse Gaussian Process Regression
    Cheng, Ching-An
    Boots, Byron
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [3] Gaussian process regression-based load forecasting model
    Yadav, Anamika
    Bareth, Rashmi
    Kochar, Matushree
    Pazoki, Mohammad
    El Sehiemy, Ragab A.
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2024, 18 (05) : 899 - 910
  • [4] Variational inference for sparse spectrum Gaussian process regression
    Tan, Linda S. L.
    Ong, Victor M. H.
    Nott, David J.
    Jasra, Ajay
    STATISTICS AND COMPUTING, 2016, 26 (06) : 1243 - 1261
  • [5] Variational inference for sparse spectrum Gaussian process regression
    Linda S. L. Tan
    Victor M. H. Ong
    David J. Nott
    Ajay Jasra
    Statistics and Computing, 2016, 26 : 1243 - 1261
  • [6] Rates of Convergence for Sparse Variational Gaussian Process Regression
    Burt, David R.
    Rasmussen, Carl Edward
    van der Wilk, Mark
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [7] Probabilistic prediction and early warning for bridge bearing displacement using sparse variational Gaussian process regression
    Ma, Yafei
    Zhang, Bachao
    Huang, Ke
    Wang, Lei
    STRUCTURAL SAFETY, 2025, 114
  • [8] Contraction rates for sparse variational approximations in Gaussian process regression
    Nieman, Dennis
    Szabo, Botond
    van Zanten, Harry
    Journal of Machine Learning Research, 2022, 23
  • [9] Contraction rates for sparse variational approximations in Gaussian process regression
    Nieman, Dennis
    Szabo, Botond
    van Zanten, Harry
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [10] Stochastic Variational Inference for Bayesian Sparse Gaussian Process Regression
    Yu, Haibin
    Trong Nghia Hoang
    Low, Bryan Kian Hsiang
    Jaillet, Patrick
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,