Hybrid LSTM-Transformer Model for the Prediction of Epileptic Seizure Using Scalp EEG

被引:3
|
作者
Xia, Lili [1 ]
Wang, Ruiqi [1 ]
Ye, Haiming [2 ]
Jiang, Bochang [1 ,3 ]
Li, Guang [1 ]
Ma, Chao [1 ]
Gao, Zhongke [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] 95910th Unit PLA, Jiuquan 735000, Gansu, Peoples R China
[3] Tianjin Renai Coll, Sch Intelligent Comp Engn, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; electroencephalogram (EEG); long short-term memory (LSTM)-Transformer; seizure prediction; CONVOLUTIONAL NEURAL-NETWORKS;
D O I
10.1109/JSEN.2024.3401771
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Epilepsy is a recurrent neurological disorder, and nearly 30% of patients with epilepsy continue to experience symptoms despite taking anti-epileptic drugs. Predicting epileptic seizures enables patients to proactively take preventive measures against potential harm. Higher accuracy (ACC) of seizure prediction would lead to a reduced incidence rate and decreased labor and resource consumption. In this study, we propose a hybrid long short-term memory (LSTM)-Transformer model for predicting epileptic seizures using scalp electroencephalogram (EEG) data. Time-frequency features are extracted through the short-time Fourier transform (STFT) applied to EEG signals, which are then inputted into the model to distinguish the interictal state and the preictal state. Our approach combines the long-distance dependence capability of the Transformer with the advantages of LSTM in processing variable-length information, resulting in more robust and informative feature extraction. We evaluate our proposed method on the Children's Hospital Boston-MIT (CHB-MIT) dataset and conduct quantitative comparisons with recent methods. The results demonstrate that our method achieves a sensitivity of 99.75%, a false prediction rate (FPR) of 0/h, and an area under the curve (AUC) of 99.39%. This novel approach provides valuable insights for epilepsy prediction.
引用
收藏
页码:21123 / 21131
页数:9
相关论文
共 50 条
  • [21] Seizure Prediction Based on Transformer Using Scalp Electroencephalogram
    Yan, Jianzhuo
    Li, Jinnan
    Xu, Hongxia
    Yu, Yongchuan
    Xu, Tianyu
    APPLIED SCIENCES-BASEL, 2022, 12 (09):
  • [22] Hybrid LSTM-Transformer Model for Emotion Recognition From Speech Audio Files
    Andayani, Felicia
    Theng, Lau Bee
    Tsun, Mark Teekit
    Chua, Caslon
    IEEE ACCESS, 2022, 10 : 36018 - 36027
  • [23] Multi-dimensional hybrid bilinear CNN-LSTM models for epileptic seizure detection and prediction using EEG signals
    Liu, Shan
    Wang, Jiang
    Li, Shanshan
    Cai, Lihui
    JOURNAL OF NEURAL ENGINEERING, 2024, 21 (06)
  • [24] Machine Learning Algorithm for Epileptic Seizure Prediction from Scalp EEG Records
    Aviles, Esteban
    Britto, Frank
    Villaseca, David
    Zegarra, Carlos
    Reyes, Francis
    INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS 2022, ICBHI 2022, 2024, 108 : 51 - 59
  • [25] Detecting Epileptic Seizure from Scalp EEG Using Lyapunov Spectrum
    Truong Quang Dang Khoa
    Nguyen Thi Minh Huong
    Vo Van Toi
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2012, 2012
  • [26] Epileptic Seizure Detection Using EEG Signal Based LSTM Models
    Rabby, Md Khurram Monir
    Eshun, Robert B.
    Belkasim, Saeid
    Islam, A. K. M. Kamrul
    2021 IEEE FOURTH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE 2021), 2021, : 131 - 132
  • [27] Epileptic seizure prediction using EEG peripheral channels
    Salvador, Carolina
    Felizardo, Virginie
    Zacarias, Henriques
    Souza-Pereira, Leonice
    Pourvahab, Mehran
    Pombo, Nuno
    Garcia, Nuno M.
    2023 IEEE 7TH PORTUGUESE MEETING ON BIOENGINEERING, ENBENG, 2023, : 60 - 63
  • [28] New approaches to epileptic seizure prediction based on EEG signals using hybrid CNNs
    Nour, Majid
    Arabaci, Bahadir
    Ocal, Hakan
    Polat, Kemal
    INTERNATIONAL JOURNAL OF INTELLIGENT ENGINEERING INFORMATICS, 2024, 12 (01) : 85 - 102
  • [29] Canonical decomposition of scalp EEG in epileptic seizure localisation
    De Vos, Maarten
    De lathauwerl, Lieven
    Van Paesschen, W.
    Van Huffel, Sabine
    CONFERENCE RECORD OF THE FORTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1-5, 2007, : 408 - +
  • [30] EEG ANALYSIS AND EPILEPTIC SEIZURE PREDICTION
    VIGLIONE, SS
    WALSH, GO
    YEAGER, CL
    SPIRE, JP
    EPILEPSIA, 1977, 18 (02) : 289 - 289