A generalization of Fiedler's lemma and its applications

被引:0
|
作者
Wu, Yangyang [1 ]
Ma, Xiaoling [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830017, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Fiedler's lemma; Adjacency spectra; Laplacian spectra; Signless Laplacian spectra; Almost equitable partition; SPECTRA; GRAPHS;
D O I
10.1016/j.laa.2024.07.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, taking a Fiedler's result on the spectrum of a matrix formed from two symmetric matrices as a motivation, we deduce a more general result on the eigenvalues of a matrix, which form from n symmetric matrices. As an important application, we obtain the adjacency spectra, Laplacian spectra and signless Laplacian spectra of a graph with a particular almost equitable partition. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:604 / 620
页数:17
相关论文
共 50 条
  • [32] The Generalization of Whitney's Lemma and Application
    岑燕斌
    岑燕明
    Journal of Mathematical Research with Applications, 1997, (03) : 2 - 9
  • [33] On a generalization of Kelly's combinatorial lemma
    Ben Amira, Aymen
    Dammak, Jamel
    Si Kaddour, Hamza
    TURKISH JOURNAL OF MATHEMATICS, 2014, 38 (06) : 949 - 964
  • [34] A Generalization of Quantum Stein's Lemma
    Brandao, Fernando G. S. L.
    Plenio, Martin B.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 295 (03) : 791 - 828
  • [35] A Generalization of Quantum Stein’s Lemma
    Fernando G. S. L. Brandão
    Martin B. Plenio
    Communications in Mathematical Physics, 2010, 295 : 791 - 828
  • [36] A polytopal generalization of Sperner's lemma
    De Loera, JA
    Peterson, E
    Su, FE
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 100 (01) : 1 - 26
  • [37] On the Borel-Cantelli lemma and its generalization
    Feng, Chunrong
    Li, Liangpan
    Shen, Jian
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (21-22) : 1313 - 1316
  • [38] Corrections to "Stochastic Barbalat's Lemma and Its Applications"
    Yu, Xin
    Wu, Zhaojing
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (05) : 1386 - 1390
  • [39] An Alexits's Lemma and its applications in approximation theory
    Ky, NX
    FUNCTIONS, SERIES, OPERATORS: ALEXITS MEMORIAL CONFERENCE, 2002, : 287 - 296
  • [40] An Extension of Yuan's Lemma and Its Applications in Optimization
    Haeser, Gabriel
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 174 (03) : 641 - 649