Radiomic study of antenatal prediction of severe placenta accreta spectrum from MRI

被引:0
|
作者
Bartels, Helena C. [1 ]
Wolsztynski, Eric [2 ,3 ]
O'Doherty, Jim [4 ,5 ,6 ]
Brophy, David P. [7 ]
Macdermott, Roisin [7 ]
Atallah, David [8 ]
Saliba, Souha [9 ]
El Kassis, Nadine [8 ]
Moubarak, Malak [8 ,10 ]
Young, Constance [11 ]
Downey, Paul [11 ]
Donnelly, Jennifer [12 ]
Geoghegan, Tony [13 ]
Brennan, Donal J. [14 ,15 ,16 ]
Curran, Kathleen M. [17 ]
机构
[1] Univ Coll Dublin, Sch Med, Natl Matern Hosp, Dept UCD Obstet & Gynaecol, Dublin, Ireland
[2] Univ Coll Cork, Sch Math Sci, Cork T12 XF62, Ireland
[3] Insight SFI Ctr Data Analyt, Dublin, Ireland
[4] Siemens Med Solut, Malvern, PA 19355 USA
[5] Med Univ South Carolina, Dept Radiol & Radiol Sci, Charleston, SC 29425 USA
[6] Univ Coll Dublin, Radiog & Diagnost Imaging, Dublin D04 V1W8, Ireland
[7] St Vincents Univ Hosp, Dept Radiol, Dublin, Ireland
[8] St Joseph Univ, Hotel Dieu France Univ Hosp, Dept Gynecol & Obstet, Beirut, Lebanon
[9] St Joseph Univ, Hotel Dieu France Univ Hosp, Dept Radiol Fetal & Placental Imaging, Beirut, Lebanon
[10] Kliniken Essen Mitte, Dept Gynecol & Gynecol Oncol, Essen, Germany
[11] Natl Matern Hosp, Dept Histopathol, Dublin, Ireland
[12] Rotunda Hosp, Dept Obstet & Gynaecol, Dublin, Ireland
[13] Mater Misericordiae Univ Hosp, Dept Radiol, Dublin D07 AX57, Ireland
[14] Univ Coll Dublin, Mater Misericordiae Univ Hosp, Gynaecol Oncol Grp UCD GOG, Dublin, Ireland
[15] St Vincents Univ Hosp, Dublin, Ireland
[16] Univ Coll Dublin, Sch Med, Syst Biol Ireland, Dublin D04 V1W8, Ireland
[17] Univ Coll Dublin, Sch Med, Dublin D04 V1W8, Ireland
来源
BRITISH JOURNAL OF RADIOLOGY | 2024年 / 97卷 / 1163期
基金
爱尔兰科学基金会;
关键词
placenta accreta spectrum; radiomics; machine learning; MRI; pregnancy; CLASSIFICATION;
D O I
10.1093/bjr/tqae164
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives We previously demonstrated the potential of radiomics for the prediction of severe histological placenta accreta spectrum (PAS) subtypes using T2-weighted MRI. We aim to validate our model using an additional dataset. Secondly, we explore whether the performance is improved using a new approach to develop a new multivariate radiomics model.Methods Multi-centre retrospective analysis was conducted between 2018 and 2023. Inclusion criteria: MRI performed for suspicion of PAS from ultrasound, clinical findings of PAS at laparotomy and/or histopathological confirmation. Radiomic features were extracted from T2-weighted MRI. The previous multivariate model was validated. Secondly, a 5-radiomic feature random forest classifier was selected from a randomized feature selection scheme to predict invasive placenta increta PAS cases. Prediction performance was assessed based on several metrics including area under the curve (AUC) of the receiver operating characteristic curve (ROC), sensitivity, and specificity.Results We present 100 women [mean age 34.6 (+/- 3.9) with PAS], 64 of whom had placenta increta. Firstly, we validated the previous multivariate model and found that a support vector machine classifier had a sensitivity of 0.620 (95% CI: 0.068; 1.0), specificity of 0.619 (95% CI: 0.059; 1.0), an AUC of 0.671 (95% CI: 0.440; 0.922), and accuracy of 0.602 (95% CI: 0.353; 0.817) for predicting placenta increta. From the new multivariate model, the best 5-feature subset was selected via the random subset feature selection scheme comprised of 4 radiomic features and 1 clinical variable (number of previous caesareans). This clinical-radiomic model achieved an AUC of 0.713 (95% CI: 0.551; 0.854), accuracy of 0.695 (95% CI 0.563; 0.793), sensitivity of 0.843 (95% CI 0.682; 0.990), and specificity of 0.447 (95% CI 0.167; 0.667).Conclusion We validated our previous model and present a new multivariate radiomic model for the prediction of severe placenta increta from a well-defined, cohort of PAS cases.Advances in knowledge Radiomic features demonstrate good predictive potential for identifying placenta increta. This suggests radiomics may be a useful adjunct to clinicians caring for women with this high-risk pregnancy condition.
引用
收藏
页码:1833 / 1842
页数:10
相关论文
共 50 条
  • [21] Prediction of placenta accreta spectrum with nomogram combining radiomic and clinical factors: A novel developed and validated integrative model
    Hu, Yumin
    Chen, Weiyue
    Kong, Chunli
    Lin, Guihan
    Li, Xia
    Zhou, Zhangwei
    Shen, Shaobo
    Chen, Ling
    Zhou, Jiahui
    Zhao, Hongyan
    Yu, Zhuo
    Wang, Zufei
    Lu, Chenying
    Ji, Jiansong
    INTERNATIONAL JOURNAL OF GYNECOLOGY & OBSTETRICS, 2023, 162 (02) : 639 - 650
  • [22] The role of fetal fibronectin and plasminogen activator inhibitor 1 biomarkers in antenatal prediction of placenta accreta spectrum
    Okmen, Firat
    Ekici, Huseyin
    Koca, Erdogan
    Sucu, Veysel
    Ogur, Merih
    Narin, Raziye
    JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2022, 42 (06) : 2008 - 2012
  • [23] Case Study: Placenta Accreta Spectrum
    Chui, M.
    AUSTRALIAN & NEW ZEALAND JOURNAL OF OBSTETRICS & GYNAECOLOGY, 2023, 63 : 47 - 47
  • [24] Risk of Severe Maternal Morbidity in Patients with Placenta Accreta Spectrum Disorders Referred from Rural Communities to a Regional Placenta Accreta Spectrum Center
    Munoz, Jessian L.
    Ramsey, Patrick S.
    Byrne, John J.
    AMERICAN JOURNAL OF PERINATOLOGY, 2023, 40 (16) : 1738 - 1744
  • [25] Diagnostic Value of Ultrasonography and MR in Antenatal Diagnosis of Placenta Accreta Spectrum
    Allameh, Zahra
    Hajiahmadi, Somayeh
    Adibi, Atoosa
    Abadi, Zahra Ebrahimi Oloun
    Dehkordi, Shaghayegh Mahmoodian
    JOURNAL OF FETAL MEDICINE, 2020, 7 (04) : 275 - 281
  • [26] Diagnostic accuracy of the placenta accreta index for placenta accreta spectrum: A prospective study
    Abu Hashim, Hatem
    Shalaby, Eman M.
    Hussien, Mohammed H.
    El Rakhawy, Mohamed
    INTERNATIONAL JOURNAL OF GYNECOLOGY & OBSTETRICS, 2022, 156 (01) : 71 - 76
  • [27] Is Antenatal Vaginal Bleeding in Placenta accreta Spectrum a Harbinger of Adverse Outcomes?
    Mo, Lihong
    Nittur, Nandini R.
    Chithiwala, Zahabiya H.
    Hedriana, Herman L.
    REPRODUCTIVE SCIENCES, 2021, 28 (SUPPL 1) : 242A - 243A
  • [28] Sensitivity of antenatal ultrasound in diagnosing posterior placenta accreta spectrum disorders
    Dellapiana, Gabriela
    Mok, Thalia
    Platt, Lawrence D.
    Silverman, Neil
    Han, Christina S.
    Esakoff, Tania
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2021, 224 (02) : S700 - S700
  • [29] Performance of antenatal imaging to predict placenta accreta spectrum degree of severity
    Morel, Olivier
    van Beekhuizen, Heleen J.
    Braun, Thorsten
    Collins, Sally
    Pateisky, Petra
    Calda, Pavel
    Henrich, Wolfgang
    Al Naimi, Ammar
    Norgaardt, Lone Nikoline
    Chalubinski, Kinga M.
    Sentilhes, Loic
    Tutschek, Boris
    Schwickert, Alexander
    Stefanovic, Vedran
    Bertholdt, Charline
    ACTA OBSTETRICIA ET GYNECOLOGICA SCANDINAVICA, 2021, 100 : 21 - 28
  • [30] Sensitivity of antenatal ultrasound in diagnosing posterior placenta accreta spectrum disorders
    Dellapiana, Gabriela
    Mok, Thalia
    Platt, Lawrence D.
    Silverman, Neil S.
    Han, Christina S.
    Esakoff, Tania F.
    JOURNAL OF PERINATAL MEDICINE, 2024, 52 (03) : 288 - 293