Improving Global Generalization and Local Personalization for Federated Learning

被引:0
|
作者
Meng, Lei [1 ,2 ]
Qi, Zhuang [1 ]
Wu, Lei [1 ]
Du, Xiaoyu [3 ]
Li, Zhaochuan [4 ]
Cui, Lizhen [1 ]
Meng, Xiangxu [1 ]
机构
[1] Shandong Univ, Sch Software, Jinan 250101, Peoples R China
[2] Shandong Res Inst Ind Technol, Jinan 250098, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[4] Inspur, Jinan 250101, Peoples R China
基金
中国国家自然科学基金;
关键词
Data models; Adaptation models; Optimization; Servers; Federated learning; Collaboration; Prototypes; Data heterogeneity; federated learning (FL); generalization; personalization; prototypical calibration;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning aims to facilitate collaborative training among multiple clients with data heterogeneity in a privacy-preserving manner, which either generates the generalized model or develops personalized models. However, existing methods typically struggle to balance both directions, as optimizing one often leads to failure in another. To address the problem, this article presents a method named personalized federated learning via cross silo prototypical calibration (pFedCSPC) to enhance the consistency of knowledge of clients by calibrating features from heterogeneous spaces, which contributes to enhancing the collaboration effectiveness between clients. Specifically, pFedCSPC employs an adaptive aggregation method to offer personalized initial models to each client, enabling rapid adaptation to personalized tasks. Subsequently, pFedCSPC learns class representation patterns on clients by clustering, averages the representations within each cluster to form local prototypes, and aggregates them on the server to generate global prototypes. Meanwhile, pFedCSPC leverages global prototypes as knowledge to guide the learning of local representation, which is beneficial for mitigating the data imbalanced problem and preventing overfitting. Moreover, pFedCSPC has designed a cross-silo prototypical calibration (CSPC) module, which utilizes contrastive learning techniques to map heterogeneous features from different sources into a unified space. This can enhance the generalization ability of the global model. Experiments were conducted on four datasets in terms of performance comparison, ablation study, in-depth analysis, and case study, and the results verified that pFedCSPC achieves improvements in both global generalization and local personalization performance via calibrating cross-source features and strengthening collaboration effectiveness, respectively.
引用
收藏
页码:76 / 87
页数:12
相关论文
共 50 条
  • [31] Federated Reconstruction: Partially Local Federated Learning
    Singhal, Karan
    Sidahmed, Hakim
    Garrett, Zachary
    Wu, Shanshan
    Rush, Keith
    Prakash, Sushant
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [32] Federated Learning for IoT Devices With Domain Generalization
    Zhang, Liling
    Lei, Xinyu
    Shi, Yichun
    Huang, Hongyu
    Chen, Chao
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (11) : 9622 - 9633
  • [33] Progressive search personalization and privacy protection using federated learning
    Sarkar, Sagnik
    Agrawal, Shaashwat
    Chowdhuri, Aditi
    Ramani, S.
    EXPERT SYSTEMS, 2025, 42 (01)
  • [34] IDS for Industrial Applications: A Federated Learning Approach with Active Personalization
    Kelli, Vasiliki
    Argyriou, Vasileios
    Lagkas, Thomas
    Fragulis, George
    Grigoriou, Elisavet
    Sarigiannidis, Panagiotis
    SENSORS, 2021, 21 (20)
  • [35] Adaptive client selection with personalization for communication efficient Federated Learning
    de Souza, Allan M.
    Maciel, Filipe
    da Costa, Joahannes B. D.
    Bittencourt, Luiz F.
    Cerqueira, Eduardo
    Loureiro, Antonio A. F.
    Villas, Leandro A.
    AD HOC NETWORKS, 2024, 157
  • [36] QuPeD: Quantized Personalization via Distillation with Applications to Federated Learning
    Ozkara, Kaan
    Singh, Navjot
    Data, Deepesh
    Diggavi, Suhas
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [37] Robustness and Personalization in Federated Learning: A Unified Approach via Regularization
    Kundu, Achintya
    Yu, Pengqian
    Wynter, Laura
    Lim, Shiau Hong
    2022 IEEE INTERNATIONAL CONFERENCE ON EDGE COMPUTING & COMMUNICATIONS (IEEE EDGE 2022), 2022, : 1 - 11
  • [38] Amplitude-Aligned Personalization and Robust Aggregation for Federated Learning
    Jiang, Yongqi
    Chen, Siguang
    Bao, Xiangwen
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2024, 9 (03): : 535 - 547
  • [39] MAP: Model Aggregation and Personalization in Federated Learning With Incomplete Classes
    Li, Xin-Chun
    Song, Shaoming
    Li, Yinchuan
    Li, Bingshuai
    Shao, Yunfeng
    Yang, Yang
    Zhan, De-Chuan
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 6560 - 6573
  • [40] Personalization Improves Privacy-Accuracy Tradeoffs in Federated Learning
    Bietti, Alberto
    Wei, Chen-Yu
    Dudik, Miroslav
    Langford, John
    Wu, Zhiwei Steven
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,