On large deviations of the moment of attaining far level by the random walk in a random environment

被引:0
|
作者
Bakay, Gavriil A. [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow, Russia
来源
DISCRETE MATHEMATICS AND APPLICATIONS | 2024年 / 34卷 / 04期
基金
俄罗斯科学基金会;
关键词
local theorems; large deviatios; random walks in random environment; DIMENSIONAL RANDOM-WALK; THEOREMS;
D O I
10.1515/dma-2024-0015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove local limit theorems on large deviations for the moment T-n of attaining the level n is an element of N by the random walk in a random environment. Exact asymptotics of probabilities P(T-n = k) are obtained for values of the parameter k corresponding to the large deviations zone.
引用
收藏
页码:187 / 195
页数:9
相关论文
共 50 条
  • [31] Large deviations for random matricial moment problems
    Gamboa, Fabrice
    Nagel, Jan
    Rouault, Alain
    Wagener, Jens
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 106 : 17 - 35
  • [32] LEVEL 1 QUENCHED LARGE DEVIATION PRINCIPLE FOR RANDOM WALK IN DYNAMIC RANDOM ENVIRONMENT
    Campos, David
    Drewitz, Alexander
    Ramirez, Alejandro F.
    Rassoul-Agha, Firas
    Seppalainen, Timo
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2013, 8 (01): : 1 - 29
  • [33] A note on quenched moderate deviations for Sinai's random walk in random environment
    Comets, Francis
    Popov, Serguei
    ESAIM - Probability and Statistics, 2004, 8 : 56 - 65
  • [34] Convergence of Martingale and Moderate Deviations for a Branching Random Walk with a Random Environment in Time
    Wang, Xiaoqiang
    Huang, Chunmao
    JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (03) : 961 - 995
  • [35] Convergence of Martingale and Moderate Deviations for a Branching Random Walk with a Random Environment in Time
    Xiaoqiang Wang
    Chunmao Huang
    Journal of Theoretical Probability, 2017, 30 : 961 - 995
  • [36] On the Local Time of a Stopped Random Walk Attaining a High Level
    V. I. Afanasyev
    Proceedings of the Steklov Institute of Mathematics, 2022, 316 : 5 - 25
  • [37] On the Local Time of a Stopped Random Walk Attaining a High Level
    Afanasyev, V., I
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2022, 316 (01) : 5 - 25
  • [38] Large deviations for the empirical distribution in the branching random walk
    Louidor, Oren
    Perkins, Will
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 19
  • [39] Limit Theorem for the Moment of Maximum of a Random Walk Reaching a Fixed Level in the Region of Moderate Deviations
    Anokhina, M. A.
    MATHEMATICAL NOTES, 2024, 115 (3-4) : 463 - 478
  • [40] Large deviations for the range of an integer valued random walk
    Hamana, Y
    Kesten, H
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2002, 38 (01): : 17 - 58