Steel surface defect detection algorithm in complex background scenarios

被引:13
|
作者
Zhao, Baiting [1 ]
Chen, Yuran [1 ]
Jia, Xiaofen [2 ,3 ]
Ma, Tianbing [3 ]
机构
[1] Anhui Univ Sci & Technol, Sch Elect & Informat Engn, Huainan 232001, Peoples R China
[2] Anhui Univ Sci & Technol, Sch Artificial Intelligence, Huainan 232001, Peoples R China
[3] Anhui Univ Sci & Technol, State Key Lab Min Response & Disaster Prevent & Co, Huainan 232001, Peoples R China
基金
中国国家自然科学基金;
关键词
Defect detection; YOLOv8; Deep learning; Multi-scale feature extraction;
D O I
10.1016/j.measurement.2024.115189
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Detecting surface defects on steel poses a significant challenge attributed to factors such as poor contrast, diverse defect types, complex background clutter, and noise interference present in images of steel surface defects. Current detection techniques face challenges in quickly and accurately identifying defects within complex backgrounds. To address the deployment of high -precision detection models on edge devices with limited resources, particularly for identifying steel surface defects, this study introduces a Multi -Scale Adaptive Fusion (MSAF) YOLOv8n defect detection algorithm designed for complex backgrounds. This algorithm effectively balances detection speed and accuracy. Firstly, a Multi -Scale Adaptive Fusion Block (MS -AFB) is proposed for the extraction of multi -scale features. Secondly, a Dynamic Coordinate Attention Ghostconv Space Pooling Pyramidfast Cross -stage Partial Convolutional (DCA-GSPPFCSPC) is devised to significantly improve detection accuracy. Furthermore, the detection head has been redesigned utilizing Lightweight Multi -scale Convolutional (LMSC) approach, and an Adaptive Pyramid Receptive Field Block (AP-RFB) has been introduced to improve the receptive field efficiently. Meanwhile, Normalized Weighted Distance (NWD) and Weighted Intersection over Union (WIoU) are employed as the boundary box loss functions, serving as substitutes for Complete Intersection over Union (CIoU) loss function with a ratio of 2:8. The experimental results obtained from the improved Northeastern University Defect Dataset (NEU-DET) dataset demonstrate that MSAF-YOLOv8n model, despite having 40.4 % of the parameters and 28.8 % of Floating Point Operations (FLOPs) of YOLOv8s, achieves a mAP@.5 that is 0.9 % higher than that of YOLOv8s. Additionally, MSAF-YOLOv8n demonstrates robust generalization capabilities in Pascal VOC2007, self -constructed datasets, and various other datasets. Subsequently, the model is implemented on embedded systems, namely Jeston TX2 NX and Orange Pi 5 +, both of which demonstrate real-time detection capabilities.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] AN ALGORITHM FOR DEFECT DETECTION ON THE SURFACE OF STEEL STRIP
    POTAPOV, AI
    MALYGIN, LL
    ERSHOV, EV
    VALIN, PN
    RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 1995, 31 (03) : 164 - 166
  • [2] Steel Surface Defect Detection via Deformable Convolution and Background Suppression
    Song, Chunhe
    Chen, Jiaxin
    Lu, Zhuo
    Li, Fei
    Liu, Yiyang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [3] Image subtraction detection algorithm for surface defect of steel ball
    1699, Institute of Computing Technology (28):
  • [4] Modeling ambient background in complex detection scenarios
    Kiff, Scott D.
    Smith, L. Eric
    Jarman, Kenneth D.
    2007 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-11, 2007, : 765 - 771
  • [5] A transformer neural network based framework for steel defect detection under complex scenarios
    Liu, Gaoyang
    Chen, Yi
    Ye, Jun
    Jiang, Yan
    Yu, Hongchuan
    Tang, Jing
    Zhao, Yang
    ADVANCES IN ENGINEERING SOFTWARE, 2025, 202
  • [6] An Improved YOLOv5 Algorithm for Steel Surface Defect Detection
    Li Shaoxiong
    Shi Zaifeng
    Kong Fanning
    Wang Ruoqi
    Luo Tao
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (24)
  • [7] Steel Surface Defect Detection Algorithm Based on YOLOv8
    Song, Xuan
    Cao, Shuzhen
    Zhang, Jingwei
    Hou, Zhenguo
    ELECTRONICS, 2024, 13 (05)
  • [8] YOLOv5-ACCOF Steel Surface Defect Detection Algorithm
    Xin, Haitao
    Song, Junpeng
    IEEE ACCESS, 2024, 12 : 157496 - 157506
  • [9] STE-YOLO: A Surface Defect Detection Algorithm for Steel Strips
    Li, Dongming
    Wang, Erfu
    Li, Zhiyi
    Yin, Yingying
    Zhang, Lijuan
    Zhao, Chunxi
    ELECTRONICS, 2025, 14 (01):
  • [10] Lightweight Steel Surface Defect Detection Algorithm Based on Improved RetinaNet
    Wang, Weijia
    Zhang, Yu
    Wang, Jinghua
    Xu, Yong
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2024, 37 (08): : 692 - 702