Role of magnetic anisotropy in the antiskyrmion-host schreibersite magnets

被引:0
|
作者
Hemmida, M. [1 ]
Masell, J. [2 ,3 ]
Karube, K. [3 ]
Ehlers, D. [1 ]
von Nidda, H. -A. Krug [1 ]
Tsurkan, V. [1 ,4 ]
Tokura, Y. [3 ,5 ,6 ,7 ]
Taguchi, Y. [3 ]
Kezsmarki, I. [1 ]
机构
[1] Univ Augsburg, Ctr Elect Correlat & Magnetism, Expt Phys 5, D-86135 Augsburg, Germany
[2] Karlsruhe Inst Technol KIT, Inst Theoret Solid State Phys, D-76049 Karlsruhe, Germany
[3] RIKEN Ctr Emergent Matter Sci CEMS, Wako 3510198, Japan
[4] Moldova State Univ, Inst Appl Phys, MD-2028 Kishinev, Moldova
[5] Univ Tokyo, Dept Appl Phys, Tokyo 1138656, Japan
[6] Univ Tokyo, Quantum Phase Elect Ctr QPEC, Tokyo 1138656, Japan
[7] Univ Tokyo, Tokyo Coll, Tokyo 1138656, Japan
关键词
SKYRMION LATTICE; TEMPERATURE; CRYSTALS;
D O I
10.1103/PhysRevB.110.054416
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic anisotropy is a fundamental property of magnetic materials that plays an essential role in the stability of magnetic domains and skyrmions. In this ferromagnetic resonance study, we report the evolution of magnetic anisotropy by substituting various 4d metals in the antiskyrmion host (Fe, Ni)3P with S4 tetragonal symmetry. In the undoped compound (Fe0.63Ni0.37)3P and in the Ru-doped (Fe0.59Ni0.32Ru0.09)3P, the uniaxial magnetic anisotropy has an easy-plane character, while Pd doping turns the material to an easy-axis-type magnet, as observed in (Fe0.62Ni0.29Pd0.09)3P. In addition to the dominant uniaxial anisotropy, we also quantify the fourfold anisotropy of the plane perpendicular to the tetragonal axis in (Fe0.63Ni0.30Pd0.07)3P. Using analytical calculations and micromagnetic simulations, we discuss how this planar anisotropy competes with the anisotropic Dzyaloshinskii-Moriya interaction in determining the orientation of the magnetic stripes and the antiskyrmions.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Approaching the uniaxiality of magnetic anisotropy in single-molecule magnets
    Chen Wang
    Yin-Shan Meng
    Shang-Da Jiang
    Bing-Wu Wang
    Song Gao
    Science China(Chemistry), 2023, (03) : 683 - 702
  • [22] Determination of the magnetic anisotropy axes of single-molecule magnets
    Wernsdorfer, W
    Chakov, NE
    Christou, G
    PHYSICAL REVIEW B, 2004, 70 (13) : 132413 - 1
  • [23] Theoretical approach for computing magnetic anisotropy in single molecule magnets
    Raghunathan, Rajamani
    Ramasesha, S.
    Sen, Diptiman
    PHYSICAL REVIEW B, 2008, 78 (10)
  • [24] The effect of powder shape on the magnetic anisotropy in NdFeB bonded magnets
    Qu, Zhongjie
    Wu, Qiong
    Zhang, Mengkang
    Wang, Zhanjia
    Yue, Ming
    Liu, Weiqiang
    AIP ADVANCES, 2024, 14 (02)
  • [25] Random magnetic anisotropy in isotropic nanocrystalline composite permanent magnets
    Sato, Suguru
    Lee, S. J.
    Mitsumata, Chiharu
    Yanagihara, Hideto
    Kita, Eiji
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (08)
  • [26] Understanding the Magnetic Anisotropy toward Single-Ion Magnets
    Meng, Yin-Shan
    Jiang, Shang-Da
    Wang, Bing-Wu
    Gao, Song
    ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (11) : 2381 - 2389
  • [27] Approaching the uniaxiality of magnetic anisotropy in single-molecule magnets
    Chen Wang
    Yin-Shan Meng
    Shang-Da Jiang
    Bing-Wu Wang
    Song Gao
    Science China Chemistry, 2023, 66 : 683 - 702
  • [28] The role of structural anisotropy in cyanometalate single-molecule magnets
    Holmes, Stephen M.
    Clerac, Rodolphe
    Parkin, Sean
    Wang, Guangbin
    Yee, Gordon T.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [29] Role of Coordination Number and Geometry in Controlling the Magnetic Anisotropy in FeII, CoII, and NiII Single-Ion Magnets
    Sarkar, Arup
    Dey, Sourav
    Rajaraman, Gopalan
    CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (62) : 14036 - 14058
  • [30] A comparison of magnetic anisotropy constants and anisotropy fields of permanent magnets determined by various measuring methods
    Nishio, H
    Taguchi, H
    Hashimoto, S
    Yajima, K
    Fukuno, A
    Yamamoto, H
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1996, 29 (09) : 2240 - 2245