Hyper-Laplacian Prior for Remote Sensing Image Super-Resolution

被引:0
|
作者
Zhao, Kanghui [1 ]
Lu, Tao [1 ]
Wang, Jiaming [1 ]
Zhang, Yanduo [2 ,3 ]
Jiang, Junjun [4 ]
Xiong, Zixiang [5 ]
机构
[1] Wuhan Inst Technol, Hubei Key Lab Intelligent Robot, Wuhan 430205, Peoples R China
[2] Hubei Univ Arts & Sci, Comp Sch, Xiangyang 441021, Peoples R China
[3] Wuhan Inst Technol, Hubei Key Lab Intelligent Robot, Wuhan 430205, Peoples R China
[4] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Peoples R China
[5] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
基金
中国国家自然科学基金;
关键词
Image reconstruction; Remote sensing; Superresolution; Image edge detection; Feature extraction; Task analysis; Laplace equations; Hyper-Laplacian prior; remote sensing image; spatial-aware reconstruction; super-resolution (SR); INFORMATION;
D O I
10.1109/TGRS.2024.3434998
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Image explicit prior has made breakthrough progress in the super-resolution (SR) due to the additional supervisory information provided. However, existing explicit prior-guided SR methods directly use the Gaussian gradient or Laplacian gradient prior, which cannot fit the gradient distribution of remote sensing images. Through the statistics of gradient probability density distribution of the remote sensing image dataset, we found that the hyper-Laplacian prior can fit the heavy-tailed distribution better, which aroused us to use the hyper-Laplacian before facilitating the SR reconstruction. We propose a novel hyper-Laplacian prior SR method for remote sensing images in this manuscript. Specifically, our model consists of three components: rough reconstruction subnetwork (RRS), hyper-Laplacian prior subnetwork (HPS), and image refinement enhancement subnetwork (RES). In the RRS, we reconstruct low-resolution (LR) images into rough SR images by a set of resblocks. In the HPS, we first introduce the hyper-Laplacian prior for LR images to provide an additional texture. Hereafter, we set up a prior loss which imposes a second-order supervision on the SR image. Like the previous image space loss function, it helps the model to gather the geometric structure of the image. Finally, the outputs of the RRS and HPS are fused and then fed to the RES for high-quality image reconstruction. Numerous studies of SR reconstruction and segmentation on UCMerced, PatternNet, and OpenBayes datasets confirm that our method is superior compared to state-of-the-art methods.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Unsupervised Remote Sensing Image Super-Resolution Guided by Visible Images
    Zhang, Zili
    Tian, Yan
    Li, Jianxiang
    Xu, Yiping
    REMOTE SENSING, 2022, 14 (06)
  • [42] RRSGAN: Reference-Based Super-Resolution for Remote Sensing Image
    Dong, Runmin
    Zhang, Lixian
    Fu, Haohuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [43] A novel neural network for super-resolution remote sensing image reconstruction
    Huo, Xing
    Tang, Ronglin
    Ma, Lingling
    Shao, Kun
    Yang, YongHua
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (5-6) : 2375 - 2385
  • [44] Global sparse attention network for remote sensing image super-resolution
    Hu, Tao
    Chen, Zijie
    Wang, Mingyi
    Hou, Xintong
    Lu, Xiaoping
    Pan, Yuanyuan
    Li, Jianqing
    KNOWLEDGE-BASED SYSTEMS, 2024, 304
  • [45] Multifiltering MLP for Spectral Super-Resolution With Remote Sensing Image Verification
    Li, Gong
    Leng, Yihong
    Zhang, Zhiyuan
    Wan, Gang
    Li, Jiaojiao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 16646 - 16658
  • [46] UNSUPERVISED REMOTE SENSING IMAGE SUPER-RESOLUTION USING CYCLE CNN
    Wang, Pengrui
    Zhang, Haopeng
    Zhou, Feng
    Jiang, Zhiguo
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3117 - 3120
  • [47] MambaFormerSR: A Lightweight Model for Remote-Sensing Image Super-Resolution
    Zhi, Ruicong
    Fan, Xiaopei
    Shi, Jingye
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [48] Multiattention Generative Adversarial Network for Remote Sensing Image Super-Resolution
    Jia, Sen
    Wang, Zhihao
    Li, Qingquan
    Jia, Xiuping
    Xu, Meng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [49] Remote Sensing Image Super-Resolution via Multiscale Enhancement Network
    Wang, Yu
    Shao, Zhenfeng
    Lu, Tao
    Wu, Changzhi
    Wang, Jiaming
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [50] Poisson image deconvolution by promoting hyper-Laplacian prior with generalized lp/lq regularization
    Chen, Lei
    Sun, Quansen
    Wang, Fanhai
    OPTICAL ENGINEERING, 2019, 58 (09)