Incomplete multi-view clustering via confidence graph completion based tensor decomposition

被引:1
|
作者
Cheng, Yuanbo [1 ]
Song, Peng [1 ]
机构
[1] Yantai Univ, Sch Comp & Control Engn, Yantai 264005, Peoples R China
关键词
Incomplete multi-view clustering; Graph learning; Confidence graph; Tensor decomposition; Tensor Schatten p-norm;
D O I
10.1016/j.eswa.2024.125151
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, extensive incomplete multi-view clustering models have been proposed to solve the problem of real-world multi-view data with missing views. However, they still have the following two drawbacks: (1) They ignore the harmful effects of outliers in data and the noise generated during graph recovery. (2) They do not fully explore the high-order relationships among views. To this end, we design a novel graph learning model called confidence graph completion based tensor decomposition (CGCTD) for incomplete multi-view clustering. Specifically, we use the confidence graphs to guide the learning of the complete graphs, which reduces the detrimental effects of outliers and missing samples in the data. Then, we stack the complete graphs of each view into an original tensor to explore high-order relationships and correlations between views. To reduce the negative effects of noise, we decompose the original tensor into an essential tensor and a noise tensor. The essential tensor is introduced to recover the accurate affinity graphs, and the noise tensor aims to model the noise contained in the corrupted graphs. Furthermore, we impose the tensor Schatten p-norm constraint on the essential tensor, which can enhance the low-rank property of the graphs and explore the similarity structure between views. Through extensive experiments on eight benchmark datasets, we demonstrate that the proposed CGCTD outperforms several existing state-of-the-art methods.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] One-step graph-based incomplete multi-view clustering
    Baishun Zhou
    Jintian Ji
    Zhibin Gu
    Zihao Zhou
    Gangyi Ding
    Songhe Feng
    Multimedia Systems, 2024, 30
  • [42] Essential anchor graph learning for incomplete multi-view clustering
    Song, Peng
    Mu, Jinshuai
    Cheng, Yuanbo
    Liu, Zhaohu
    Zheng, Wenming
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 145
  • [43] Incomplete Multi-view Clustering via Prototype-based Imputation
    Li, Haobin
    Li, Yunfan
    Yang, Mouxing
    Hu, Peng
    Peng, Dezhong
    Peng, Xi
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 3911 - 3919
  • [44] Incomplete multi-view clustering based on hypergraph
    Chen, Jin
    Xu, Huafu
    Xue, Jingjing
    Gao, Quanxue
    Deng, Cheng
    Lv, Ziyu
    INFORMATION FUSION, 2025, 117
  • [45] Incomplete Multi-view Clustering
    Gao, Hang
    Peng, Yuxing
    Jian, Songlei
    INTELLIGENT INFORMATION PROCESSING VIII, 2016, 486 : 245 - 255
  • [46] Tensor-SVD Based Graph Learning for Multi-View Subspace Clustering
    Gao, Quanxue
    Xia, Wei
    Wan, Zhizhen
    Xie, Deyan
    Zhang, Pu
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 3930 - 3937
  • [47] Tensor-Based Adaptive Consensus Graph Learning for Multi-View Clustering
    Guo, Wei
    Che, Hangjun
    Leung, Man-Fai
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (02) : 4767 - 4784
  • [48] Sparse Graph Tensor Learning for Multi-View Spectral Clustering
    Chen, Man-Sheng
    Li, Zhi-Yuan
    Lin, Jia-Qi
    Wang, Chang-Dong
    Huang, Dong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (05): : 3534 - 3543
  • [49] Sparse Graph Tensor Learning for Multi-View Spectral Clustering
    Chen, Man-Sheng
    Li, Zhi-Yuan
    Lin, Jia-Qi
    Wang, Chang-Dong
    Huang, Dong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, : 1 - 10
  • [50] Incomplete Contrastive Multi-View Clustering with High-Confidence Guiding
    Chao, Guoqing
    Jiang, Yi
    Chu, Dianhui
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 10, 2024, : 11221 - 11229