Classifying Alzheimer's Disease Neuropathology Using Clinical and MRI Measurements

被引:0
|
作者
Zhuang, Xiaowei [1 ,2 ,3 ]
Cordes, Dietmar [1 ,4 ]
Bender, Andrew R. [1 ]
Nandy, Rajesh [5 ]
Oh, Edwin C. [2 ,3 ,6 ]
Kinney, Jefferson [2 ,7 ]
Caldwell, Jessica Z. K. [1 ]
Cummings, Jeffrey [7 ]
Miller, Justin [1 ]
机构
[1] Cleveland Clin, Lou Ruvo Ctr Brain Hlth, Las Vegas, NV USA
[2] Univ Nevada, Interdisciplinary Neurosci PhD Program, Las Vegas, NV USA
[3] Univ Nevada, Lab Neurogenet & Precis Med, Las Vegas, NV USA
[4] Univ Colorado Boulder, Boulder, CO USA
[5] Univ North Texas Hlth Sci Ctr, Sch Publ Hlth, Dept Biostat & Epidemiol, Ft Worth, TX USA
[6] Univ Nevada, Sch Med, Dept Internal Med, Las Vegas, NV USA
[7] Univ Nevada, Sch Integrated Hlth Sci, Chambers Grundy Ctr Transformat Neurosci, Dept Brain Hlth, Las Vegas, NV USA
关键词
Alzheimer's disease-meta-ROIs; APOE genotype; in vivo amyloid status; machine learning; severe AD neuropathology; HIPPOCAMPAL ATROPHY; MILD; ASSOCIATION; SEVERITY;
D O I
10.3233/JAD-231321
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Computer-aided machine learning models are being actively developed with clinically available biomarkers to diagnose Alzheimer's disease (AD) in living persons. Despite considerable work with cross-sectional in vivo data, many models lack validation against postmortem AD neuropathological data. Objective: Train machine learning models to classify the presence or absence of autopsy-confirmed severe AD neuropathology using clinically available features. Methods: AD neuropathological status are assessed at postmortem for participants from the National Alzheimer's Coordinating Center (NACC). Clinically available features are utilized, including demographics, Apolipoprotein E(APOE) genotype, and cortical thicknesses derived from ante-mortem MRI scans encompassing AD meta regions of interest (meta-ROI). Both logistic regression and random forest models are trained to identify linearly and nonlinearly separable features between participants with the presence (N=91, age-at-MRI = 73.6 +/- 9.24, 38 women) or absence (N=53, age-at-MRI = 68.93 +/- 19.69, 24 women) of severe AD neuropathology. The trained models are further validated in an external data set against in vivo amyloid biomarkers derived from PET imaging (amyloid-positive: N=71, age-at-MRI = 74.17 +/- 6.37, 26 women; amyloid-negative: N=73, age-at-MRI = 71.59 +/- 6.80, 41 women). Results: Our models achieve a cross-validation accuracy of 84.03% in classifying the presence or absence of severe AD neuropathology, and an external-validation accuracy of 70.14% in classifying in vivo amyloid positivity status. Conclusions: Our models show that clinically accessible features, including APOE genotype and cortical thinning encompassing AD meta-ROIs, are able to classify both postmortem confirmed AD neuropathological status and in vivo amyloid status with reasonable accuracies. These results suggest the potential utility of AD meta-ROIs in determining AD neuropathological status in living persons.
引用
收藏
页码:843 / 862
页数:20
相关论文
共 50 条
  • [21] MRI measurements may indicate early Alzheimer's disease
    Anon
    Biophotonics International, 2002, 9 (06):
  • [22] Alzheimer's disease clinical variants show distinct neuroinflammatory profiles with neuropathology
    Boon, Baayla D. C.
    Frigerio, Irene
    de Gooijer, Danae
    Morrema, Tjado H. J.
    Bol, John
    de Graaf, Yvon Galis
    Heymans, Martijn
    Murray, Melissa E.
    van der Lee, Sven J.
    Holstege, Henne
    van de Berg, Wilma D. J.
    Jonkman, Laura E.
    Rozemuller, Annemieke J. M.
    Bouwman, Femke H.
    Hoozemans, Jeroen J. M.
    NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY, 2024, 50 (05)
  • [23] Apolipoprotein E and the neuropathology of Alzheimer's disease
    Mirra, SS
    HUMAN PATHOLOGY, 1999, 30 (10) : 1125 - 1127
  • [24] Variations in the neuropathology of familial Alzheimer's disease
    Shepherd, Claire
    McCann, Heather
    Halliday, Glenda Margaret
    ACTA NEUROPATHOLOGICA, 2009, 118 (01) : 37 - 52
  • [25] Implicit memory and Alzheimer's disease neuropathology
    Fleischman, DA
    Wilson, RS
    Gabrieli, JDE
    Schneider, JA
    Bienias, JL
    Bennett, DA
    BRAIN, 2005, 128 : 2006 - 2015
  • [26] Neuropathology of Alzheimer's disease and related disorders
    Perl, DP
    NEUROLOGIC CLINICS, 2000, 18 (04) : 847 - +
  • [27] Molecular neuropathology in the causation of Alzheimer's disease
    Beyreuther, K
    Multhaup, G
    Masters, CL
    NEUROPSYCHIATRY IN OLD AGE: AN UPDATE, 1996, 3 : 43 - 54
  • [28] Diabetes is Not Associated with Alzheimer's Disease Neuropathology
    Pimentel dos Santos Matioli, Maria Niures
    Suemoto, Claudia Kimie
    Rodriguez, Roberta Diehl
    Farias, Daniela Souza
    da Silva, Magnolia Moreira
    Paraizo Leite, Renata Elaine
    Lucena Ferretti-Rebustini, Renata Eloah
    Farfel, Jose Marcelo
    Pasqualucci, Carlos Augusto
    Jacob Filho, Wilson
    Arvanitakis, Zoe
    Naslaysky, Michel Satya
    Zatz, Mayana
    Grinberg, Lea Tenenholz
    Nitrini, Ricardo
    JOURNAL OF ALZHEIMERS DISEASE, 2017, 60 (03) : 1035 - 1043
  • [29] Details of neuropathology in Arctic Alzheimer's disease
    Kalimo, H.
    Bogdanovic, N.
    Callaghan, P. O.
    Bird, T. D.
    Nochlin, D.
    Schellenberg, G. D.
    Brundin, R.
    Olofsson, T.
    Zhang, X.
    Nilsson, L. N. G.
    Basun, H.
    Lannfelt, L.
    Ingelsson, M.
    BRAIN PATHOLOGY, 2010, 20 : 22 - 23
  • [30] Alzheimer's Disease: Imaging Neuropathology In Vivo
    Jacobs, H. I. L.
    JOURNAL OF PATHOLOGY, 2018, 246 : S9 - S9