Lebesgue Constants for Cantor Sets

被引:0
|
作者
Goncharov, Alexander [1 ]
Paksoy, Yaman [1 ]
机构
[1] Bilkent Univ, Dept Math, TR-06800 Ankara, Turkiye
关键词
Lebesgue constants; Cantor sets;
D O I
10.1080/10586458.2024.2381676
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We evaluate the values of the Lebesgue constants in polynomial interpolation for three types of Cantor sets. In all cases, the sequences of Lebesgue constants are not bounded. This disproves the statement by Mergelyan.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Julia sets and wild Cantor sets
    Alastair Fletcher
    Jang-Mei Wu
    Geometriae Dedicata, 2015, 174 : 169 - 176
  • [22] On the intersection of Cantor τ-sets
    Moshchevitin, NG
    RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (01) : 155 - 156
  • [23] Sums of Cantor sets
    Cabrelli, CA
    Hare, KE
    Molter, UM
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1997, 17 : 1299 - 1313
  • [24] A Characteristic of Cantor Sets
    麦结华
    柳州师专学报, 2013, 28 (01) : 108 - 110
  • [25] Parabolic Cantor sets
    Urbanski, M
    FUNDAMENTA MATHEMATICAE, 1996, 151 (03) : 241 - 277
  • [26] Hairy Cantor sets
    Cheraghi, Davoud
    Pedramfar, Mohammad
    ADVANCES IN MATHEMATICS, 2022, 398
  • [27] Nested Cantor sets
    Pierre Berger
    Carlos Gustavo Moreira
    Mathematische Zeitschrift, 2016, 283 : 419 - 435
  • [28] SCRAMBLED CANTOR SETS
    Geschke, Stefan
    Grebik, Jan
    Miller, Benjamin D.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (10) : 4461 - 4468
  • [29] Nested Cantor sets
    Berger, Pierre
    Moreira, Carlos Gustavo
    MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (1-2) : 419 - 435
  • [30] EMBEDDING CANTOR SETS IN A MANIFOLD .I. TAME CANTOR SETS IN EN
    OSBORNE, RP
    MICHIGAN MATHEMATICAL JOURNAL, 1966, 13 (01) : 57 - &