Artificial intelligence-based masked face detection: A survey

被引:0
|
作者
Hosny, Khalid M. [1 ]
Ibrahim, Nada AbdElFattah [1 ]
Mohamed, Ehab R. [1 ]
Hamza, Hanaa M. [1 ]
机构
[1] Zagazig Univ, Fac Comp & Informat, Dept Informat Technol, Zagazig 44519, Egypt
来源
关键词
COVID-19; Deep learning; Machine learning; Masked face detection and recognition; CONVOLUTIONAL NETWORKS; DEEP;
D O I
10.1016/j.iswa.2024.200391
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The COVID-19 virus is causing a global pandemic. The total number of new coronavirus cases worldwide by the end of November 2020 had already surpassed 60 million. The World Health Organization (WHO) has determined that wearing masks is a crucial precaution during the COVID-19 epidemic to limit the growth of viruses, and facemasks are frequently seen in public places worldwide. Also, many public service providers wear face masks (covering their mouths and noses). These events brought attention to the need for automatic computer-visionbased object detection (masked face detection) methods to track public behavior. Therefore, it is necessary to develop tools for monitor people who have not used masks in public service areas in real-time. Reducing the spread of infectious diseases can occur when masked face detection techniques are used for authentication instead of mask removal for face matching. A superior framework of masked face detection could improve security systems and lower the rate of crime. Masked face detection is a computer vision method standard in people's daily lives to recognize, discover, and recognize masked faces in pictures and videos. This study provides a thorough and systematic analysis of masked face detection algorithms. With the help of examples, we have thoroughly examined and reviewed the studies done concerning face mask identification and techniques for masked face detection. Additionally, we compared and explained different masked face detection dataset types, libraries, and techniques. We also discussed the challenges with masked face detection and whether the researchers could overcome them. We have discussed and conducted a thorough evaluation of the accuracy, pros, and cons of various approaches by comparing their performance on multiple datasets. As a result, this study aims to give the researcher a broader viewpoint to aid him in finding patterns and trends in masked face detection in various COVID-19 contexts, overcoming challenges that are still present, and creating future algorithms for masked face detection that are more reliable and accurate.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Artificial Intelligence-Based Early Detection of Dengue Using CBC Data
    Riya, Nusrat Jahan
    Chakraborty, Mritunjoy
    Khan, Riasat
    IEEE ACCESS, 2024, 12 : 112355 - 112367
  • [42] Review on Artificial Intelligence-based Network Attack Detection in Power Systems
    Zhang B.
    Liu X.
    Yu Z.
    Wang W.
    Jin Q.
    Li W.
    Gaodianya Jishu/High Voltage Engineering, 2022, 48 (11): : 4413 - 4426
  • [43] An adaptive, artificial intelligence-based chatter detection method for milling operations
    Stavropoulos, Panagiotis
    Souflas, Thanassis
    Papaioannou, Christos
    Bikas, Harry
    Mourtzis, Dimitris
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 124 (7-8): : 2037 - 2058
  • [44] Artificial Intelligence-Based Technique for Intrusion Detection in Wireless Sensor Networks
    Kalnoor, Gauri
    Agarkhed, Jayashree
    ARTIFICIAL INTELLIGENCE AND EVOLUTIONARY COMPUTATIONS IN ENGINEERING SYSTEMS, ICAIECES 2016, 2017, 517 : 835 - 845
  • [45] Artificial intelligence-based detection and mitigation of cyber disruptions in microgrid control
    Tabassum, Tambiara
    Lim, Steven
    Khalghani, Mohammad Reza
    Electric Power Systems Research, 2024, 226
  • [46] Artificial Intelligence-Based Detection and Numbering of Dental Implants on Panoramic Radiographs
    Balel, Yunus
    Sagtas, Kaan
    Teke, Fatih
    Kurt, Mehmet Ali
    CLINICAL IMPLANT DENTISTRY AND RELATED RESEARCH, 2025, 27 (01)
  • [47] Artificial intelligence-based detection and mitigation of cyber disruptions in microgrid control
    Tabassum, Tambiara
    Lim, Steven
    Khalghani, Mohammad Reza
    ELECTRIC POWER SYSTEMS RESEARCH, 2024, 226
  • [48] Trustworthy Artificial Intelligence-based federated architecture for symptomatic disease detection
    Lopez-Blanco, Raul
    Alonso, Ricardo S.
    Rodriguez-Gonzalez, Sara
    Prieto, Javier
    Corchado, Juan M.
    NEUROCOMPUTING, 2024, 579
  • [49] Artificial intelligence-based detection of atrial fibrillation from chest radiographs
    Toshimasa Matsumoto
    Shoichi Ehara
    Shannon L. Walston
    Yasuhito Mitsuyama
    Yukio Miki
    Daiju Ueda
    European Radiology, 2022, 32 : 5890 - 5897
  • [50] Artificial Intelligence-Based Quality Management and Detection System for Personalized Learning
    Yu, Haixia
    Wang, Jidong
    Murugesan, Mohanraj
    Rahman, A. B. M. Salman
    JOURNAL OF INTERCONNECTION NETWORKS, 2022, 22 (SUPP02)