Artificial intelligence-based masked face detection: A survey

被引:0
|
作者
Hosny, Khalid M. [1 ]
Ibrahim, Nada AbdElFattah [1 ]
Mohamed, Ehab R. [1 ]
Hamza, Hanaa M. [1 ]
机构
[1] Zagazig Univ, Fac Comp & Informat, Dept Informat Technol, Zagazig 44519, Egypt
来源
关键词
COVID-19; Deep learning; Machine learning; Masked face detection and recognition; CONVOLUTIONAL NETWORKS; DEEP;
D O I
10.1016/j.iswa.2024.200391
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The COVID-19 virus is causing a global pandemic. The total number of new coronavirus cases worldwide by the end of November 2020 had already surpassed 60 million. The World Health Organization (WHO) has determined that wearing masks is a crucial precaution during the COVID-19 epidemic to limit the growth of viruses, and facemasks are frequently seen in public places worldwide. Also, many public service providers wear face masks (covering their mouths and noses). These events brought attention to the need for automatic computer-visionbased object detection (masked face detection) methods to track public behavior. Therefore, it is necessary to develop tools for monitor people who have not used masks in public service areas in real-time. Reducing the spread of infectious diseases can occur when masked face detection techniques are used for authentication instead of mask removal for face matching. A superior framework of masked face detection could improve security systems and lower the rate of crime. Masked face detection is a computer vision method standard in people's daily lives to recognize, discover, and recognize masked faces in pictures and videos. This study provides a thorough and systematic analysis of masked face detection algorithms. With the help of examples, we have thoroughly examined and reviewed the studies done concerning face mask identification and techniques for masked face detection. Additionally, we compared and explained different masked face detection dataset types, libraries, and techniques. We also discussed the challenges with masked face detection and whether the researchers could overcome them. We have discussed and conducted a thorough evaluation of the accuracy, pros, and cons of various approaches by comparing their performance on multiple datasets. As a result, this study aims to give the researcher a broader viewpoint to aid him in finding patterns and trends in masked face detection in various COVID-19 contexts, overcoming challenges that are still present, and creating future algorithms for masked face detection that are more reliable and accurate.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Network intrusion detection system: A survey on artificial intelligence-based techniques
    Habeeb, Mohammed Sayeeduddin
    Babu, T. Ranga
    EXPERT SYSTEMS, 2022, 39 (09)
  • [2] Nationwide survey of the status of artificial intelligence-based intracranial aneurysm detection systems
    Wang, Xinran
    Shi, Zhao
    Ji, Xiaoqian
    Hu, Bin
    Chen, Sui
    Zhang, Longjiang
    INTELLIGENT MEDICINE, 2025, 5 (01): : 37 - 45
  • [3] Artificial Intelligence-Based Detection of Smoke Plume
    Jeong, Yemin
    Youn, Youjeong
    Kim, Seoyeon
    Kang, Jonggu
    Choi, Soyeon
    Im, Yungyo
    Seo, Youngmin
    Yu, Jeong-Ah
    Sung, Kyoung-Hee
    Kim, Sang-Min
    Lee, Yangwon
    KOREAN JOURNAL OF REMOTE SENSING, 2023, 39 (02) : 859 - 873
  • [4] A Survey on Artificial Intelligence-Based Acoustic Source Identification
    Zaheer, Ruba
    Ahmad, Iftekhar
    Habibi, Daryoush
    Islam, Kazi Yasin
    Phung, Quoc Viet
    IEEE ACCESS, 2023, 11 : 60078 - 60108
  • [5] Artificial Intelligence-Based Facial Palsy Evaluation: A Survey
    Zhang, Yating
    Gao, Weixiang
    Yu, Hui
    Dong, Junyu
    Xia, Yifan
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 : 3116 - 3134
  • [6] Artificial Intelligence-Based Autonomous UAV Networks: A Survey
    Sarkar, Nurul I.
    Gul, Sonia
    DRONES, 2023, 7 (05)
  • [7] Artificial Intelligence-Based Malware Detection, Analysis, and Mitigation
    Djenna, Amir
    Bouridane, Ahmed
    Rubab, Saddaf
    Marou, Ibrahim Moussa
    SYMMETRY-BASEL, 2023, 15 (03):
  • [8] Artificial Intelligence-based improvement of smartwatch detection of AF
    Wan, Elaine
    Glotzer, Taya
    Mittal, Suneet
    Senepart, Oceane
    Lefebvre, Baptiste
    CIRCULATION, 2024, 150
  • [9] Review of artificial intelligence-based bridge damage detection
    Zhang, Yang
    Yuen, Ka-Veng
    ADVANCES IN MECHANICAL ENGINEERING, 2022, 14 (09)
  • [10] A Review of Artificial Intelligence-Based Dyslexia Detection Techniques
    Alkhurayyif, Yazeed
    Sait, Abdul Rahaman Wahab
    DIAGNOSTICS, 2024, 14 (21)