Prediction of Settling Velocity of Microplastics by Multiple Machine-Learning Methods

被引:0
|
作者
Leng, Zequan [1 ]
Cao, Lu [1 ]
Gao, Yun [1 ]
Hou, Yadong [1 ]
Wu, Di [1 ]
Huo, Zhongyan [1 ]
Zhao, Xizeng [2 ]
机构
[1] Zhejiang Ocean Univ, Sch Marine Engn Equipment, Zhoushan 316022, Peoples R China
[2] Zhejiang Univ, Ocean Coll, Zhoushan 316021, Peoples R China
基金
中国国家自然科学基金;
关键词
microplastics; settling velocity; machine learning; formula calculation; MARINE; ACCUMULATION; PARTICLES; SEDIMENTS;
D O I
10.3390/w16131850
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The terminal settling velocity of microplastics plays a vital role in the physical behavior of microplastics, and is related to the migration and fate of these microplastics in the ocean. At present, the terminal settling velocity is mostly calculated by formulae, which also leads to a fewer studies on the use of machine-learning models to predict its settling velocity in this field. This study fills this gap by studying the prediction of the settling velocity by machine-learning models and compares it with the traditional formula calculation method. This study evaluates three machine-learning models, namely, random forest, linear regression, and the back propagation neural network. The results of this study show that the prediction results of the three machine-learning models are more accurate than those of traditional formula calculations, with an accuracy increase of 12.79% (random forest), 9.3% (linear regression), and 13.92% (back propagation neural network), respectively. At the same time, according to the results of this study, random forest is better than the other models in the mean absolute error and root mean square error evaluation indicators, which are only 0.0036 and 0.0047. This paper proposes three machine-learning methods to prove that the prediction effect of machine learning is much better than traditional formula calculations, thereby improving the shortcomings in this field. At the same time, it also provides reliable data support for studying the migration behavior of microplastics in water bodies.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Prediction of Nucleophilicity and Electrophilicity Based on a Machine-Learning Approach
    Liu, Yidi
    Yang, Qi
    Cheng, Junjie
    Zhang, Long
    Luo, Sanzhong
    Cheng, Jin-Pei
    CHEMPHYSCHEM, 2023, 24 (14)
  • [42] Machine-Learning Prediction of Underwater Shock Loading on Structures
    Zhang, Mou
    Drikakis, Dimitris
    Li, Lei
    Yan, Xiu
    COMPUTATION, 2019, 7 (04)
  • [43] An investigation on machine-learning models for the prediction of cyanobacteria growth
    Giere, Johannes
    Riley, Derek
    Nowling, R. J.
    McComack, Joshua
    Sander, Hedda
    FUNDAMENTAL AND APPLIED LIMNOLOGY, 2020, 194 (02) : 85 - 94
  • [44] Machine-Learning Applications in Structural Response Prediction: A Review
    Afshar, Aref
    Nouri, Gholamreza
    Ghazvineh, Shahin
    Hosseini Lavassani, Seyed Hossein
    PRACTICE PERIODICAL ON STRUCTURAL DESIGN AND CONSTRUCTION, 2024, 29 (03)
  • [45] Machine-learning techniques for the prediction of protein–protein interactions
    Debasree Sarkar
    Sudipto Saha
    Journal of Biosciences, 2019, 44
  • [46] Machine-learning models for prediction of sepsis patients mortality
    Bao, C.
    Deng, F.
    Zhao, S.
    MEDICINA INTENSIVA, 2023, 47 (06) : 315 - 325
  • [47] Energy landscapes for a machine-learning prediction of patient discharge
    Das, Ritankar
    Wales, David J.
    PHYSICAL REVIEW E, 2016, 93 (06)
  • [48] Performance Prediction of NUMA Placement: a Machine-Learning Approach
    Arapidis, Fanourios
    Karakostas, Vasileios
    Papadopoulou, Nikela
    Nikas, Konstantinos
    Goumas, Georgios
    Koziris, Nectarios
    2018 16TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING TECHNOLOGY AND SCIENCE (CLOUDCOM 2018), 2018, : 296 - 301
  • [49] Representation of compounds for machine-learning prediction of physical properties
    Seko, Atsuto
    Hayashi, Hiroyuki
    Nakayama, Keita
    Takahashi, Akira
    Tanaka, Isao
    PHYSICAL REVIEW B, 2017, 95 (14)
  • [50] Design of Machine-Learning Classifier for Stock Market Prediction
    Srivastava A.K.
    Srivastava A.
    Singh S.
    Sugandha S.
    Tripta
    Gupta S.
    SN Computer Science, 2022, 3 (1)