Using eigenvalues of distance matrices for outlier detection

被引:0
|
作者
Modarres, Reza [1 ]
机构
[1] George Washington Univ, Dept Stat, Washington, DC 20052 USA
关键词
Distance matrix; decomposition; eigenvalue; outlier; detection;
D O I
10.3233/IDA-230048
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Distance or dissimilarity matrices are widely used in applications. We study the relationships between the eigenvalues of the distance matrices and outliers and show that outliers affect the pairwise distances and inflate the eigenvalues. We obtain the eigenvalues of a distance matrix that is affected by k outliers and compare them to the eigenvalues of a distance matrix with a constant structure. We show a discrepancy in the sizes of the eigenvalues of a distance matrix that is contaminated with outliers, present an algorithm and offer a new outlier detection method based on the eigenvalues of the distance matrix. We compare the new distance-based outlier technique with several existing methods under five distributions. The methods are applied to a study of public utility companies and gene expression data.
引用
收藏
页码:871 / 889
页数:19
相关论文
共 50 条
  • [1] Outlier Eigenvalues for Deformed IID Random Matrices
    Bordenave, Charles
    Capitaine, Mireille
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (11) : 2131 - 2194
  • [2] On the eigenvalues of Euclidean distance matrices
    Alfakih, A. Y.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2008, 27 (03): : 237 - 250
  • [3] EIGENVALUES OF EUCLIDEAN DISTANCE MATRICES
    BALL, K
    JOURNAL OF APPROXIMATION THEORY, 1992, 68 (01) : 74 - 82
  • [4] Scalable Outlier Detection Using Distance Projections
    Cao, Jin
    Hu, Rui
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 4431 - 4440
  • [5] Majorization for the eigenvalues of Euclidean distance matrices
    Kurata, Hiroshi
    Tarazaga, Pablo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (05) : 1473 - 1481
  • [7] ODDC: Outlier detection using distance distribution clustering
    Niu, Kun
    Huang, Chong
    Zhang, Shubo
    Chen, Junliang
    EMERGING TECHNOLOGIES IN KNOWLEDGE DISCOVERY AND DATA MINING, 2007, 4819 : 332 - +
  • [8] A bound for the matching distance between eigenvalues of matrices
    Gil, Michael
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2023, 102 (1-2): : 95 - 102
  • [9] Distance Evaluation to the Set of Matrices with Multiple Eigenvalues
    Kalinina, Elizaveta
    Uteshev, Alexei
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING (CASC 2022), 2022, 13366 : 206 - 224
  • [10] On the Eigenvalues of the Ordinary and Reciprocal Resistance-Distance Matrices
    Nikolic, Sonja
    Trinajstic, Nenad
    Zhou, Bo
    COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING, VOL 1: ADVANCES IN COMPUTATIONAL SCIENCE, 2009, 1108 : 205 - +