On the Eigenvalues of the Ordinary and Reciprocal Resistance-Distance Matrices

被引:0
|
作者
Nikolic, Sonja [1 ]
Trinajstic, Nenad [1 ]
Zhou, Bo [2 ]
机构
[1] Rudjer Boskovic Inst, POB 180, HR-10002 Zagreb, Croatia
[2] South China Normal Univ, Dept Math, Guangzhou 510631, Peoples R China
基金
中国国家自然科学基金;
关键词
ordinary resistance-distance matrix; reciprocal resistance-distance matrix; eigenvalues; lower and upper bounds; ZAGREB INDEXES; WIENER; DESCRIPTORS; GRAPHS; QSAR;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The resistance-distance r(ij) between vertices nu(i) and nu(j) of a connected (molecular) graph is equal to the effective resistance between the respective nodes of the electrical network constructed corresponding to the graph such that the resistance of any two adjacent nodes is unity. We provide lower and upper bounds for the largest and smallest eigenvalues of the ordinary resistance-distance matrix (r(ij)) and the reciprocal resistance-distance matrix (rr(ij)) of a connected (molecular) graph.
引用
收藏
页码:205 / +
页数:2
相关论文
共 50 条
  • [1] Eigenvalues of the resistance-distance matrix of complete multipartite graphs
    Kinkar Chandra Das
    Yujun Yang
    Journal of Inequalities and Applications, 2017
  • [2] Eigenvalues of the resistance-distance matrix of complete multipartite graphs
    Das, Kinkar Chandra
    Yang, Yujun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [3] On resistance-distance and Kirchhoff index
    Bo Zhou
    Nenad Trinajstić
    Journal of Mathematical Chemistry, 2009, 46
  • [4] Resistance-distance sum rules
    Klein, DJ
    CROATICA CHEMICA ACTA, 2002, 75 (02) : 633 - 649
  • [5] On resistance-distance and Kirchhoff index
    Zhou, Bo
    Trinajstic, Nenad
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2009, 46 (01) : 283 - 289
  • [6] Some Results on the Resistance-Distance Spectrum
    Leyou XU
    Bo ZHOU
    Journal of Mathematical Research with Applications, 2023, 43 (05) : 522 - 534
  • [7] Bounds for Resistance-Distance Spectral Radius
    Maden, A. Dilek Gungor
    Gutman, Ivan
    Cevik, A. Sinan
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (01): : 43 - 50
  • [8] On Kirchhoff Index and Resistance-Distance Energy of a Graph
    Das, Kinkar Ch
    Gungor, A. Dilek
    Cevik, A. Sinan
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2012, 67 (02) : 541 - 556
  • [9] On the eigenvalues of Euclidean distance matrices
    Alfakih, A. Y.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2008, 27 (03): : 237 - 250
  • [10] EIGENVALUES OF EUCLIDEAN DISTANCE MATRICES
    BALL, K
    JOURNAL OF APPROXIMATION THEORY, 1992, 68 (01) : 74 - 82