U-Net/ResNet-50 Network with Transfer Learning for Semantic Segmentation in Search and Rescue

被引:0
|
作者
Salas-Espinales, Andres [1 ,2 ]
Velez-Chavez, Elian [2 ]
Vazquez-Martin, Ricardo [1 ]
Garcia-Cerezo, Alfonso [1 ]
Mandow, Anthony [1 ]
机构
[1] Univ Malaga, Inst Mechatron Engn & Cyber Phys Syst, C Dr Ortiz Ramos S-N, Malaga 29071, Andalucia, Spain
[2] Univ Tecn Manabi, Fac Ciencias Matemat Fis & Quim, Dept Elect Elect & Automatizac, C Ave Urbina & Che Guevara, Portoviejo 130105, Manabi, Ecuador
关键词
Deep Learning; Semantic segmentation; Transfer Learning; Search and rescue; dataset;
D O I
10.1007/978-3-031-59167-9_21
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Semantic segmentation has been successfully adopted for scenarios such as indoor, outdoor, urban scenes, and synthetic scenes, but applications with scarce labeled data such as search-and-rescue (SAR), have not been addressed. In this work, we propose a transfer learning approach where the U-Net convolutional neural network incorporates ResNet-50 as an encoder for the segmentation of objects in SAR situations. First, the proposed model is trained and validated with 19 classes of the CityScapes dataset. Then we test the proposed approach by i) training the model with a set of 14 Cityscapes classes with relevant similarities to SAR classes, and ii) using transfer learning with the self-developed dataset in SAR scenarios, which has 349 semantic labeled SAR images. The results indicate good recognition in classes with significant presence on the training images.
引用
收藏
页码:244 / 255
页数:12
相关论文
共 50 条
  • [41] Knowledge-based U-Net and transfer learning for automatic boundary segmentation
    Zhou, Xiaoqi
    Shi, Peixin
    Sheil, Brian
    Suryasentana, Stephen
    ADVANCED ENGINEERING INFORMATICS, 2024, 59
  • [42] SEMANTIC SEGMENTATION FOR URBAN PLANNING MAPS BASED ON U-NET
    Guo, Zhiling
    Shengoku, Hiroaki
    Wu, Guangming
    Chen, Qi
    Yuan, Wei
    Shi, Xiaodan
    Shao, Xiaowei
    Xu, Yongwei
    Shibasaki, Ryosuke
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6187 - 6190
  • [43] Semantic Segmentation using Modified U-Net for Autonomous Driving
    Sugirtha, T.
    Sridevi, M.
    2022 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2022, : 831 - 837
  • [44] Deep Learning for Glaucoma Detection: R-CNN ResNet-50 and Image Segmentation
    Puchaicela-Lozano, Marlene S.
    Zhinin-Vera, Luis
    Andrade-Reyes, Ana J.
    Baque-Arteaga, Dayanna M.
    Cadena-Morejon, Carolina
    Tirado-Espin, Andres
    Ramirez-Cando, Lenin
    Almeida-Galarraga, Diego
    Cruz-Varela, Jonathan
    Villalba Meneses, Fernando
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2023, 14 (06) : 1186 - 1197
  • [45] Automatic polyp segmentation using U-Net-ResNet50
    Alam, Saruar
    Tomar, Nikhil Kumar
    Thakur, Aarati
    Jha, Debesh
    Rauniyar, Ashish
    CEUR Workshop Proceedings, 2020, 2882
  • [46] Semantic segmentation of human cell nucleus using deep U-Net and other versions of U-Net models
    Yadavendra
    Chand, Satish
    NETWORK-COMPUTATION IN NEURAL SYSTEMS, 2022, 33 (3-4) : 167 - 186
  • [47] Geographic Atrophy Lesion Segmentation Using a Deep Learning Network (U-net)
    Patil, Jasmine
    Kawczynski, Michael
    Gao, Simon S.
    Coimbra, Alexandre Fernandez
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [48] Development of Deep Learning with RDA U-Net Network for Bladder Cancer Segmentation
    Lee, Ming-Chan
    Wang, Shao-Yu
    Pan, Cheng-Tang
    Chien, Ming-Yi
    Li, Wei-Ming
    Xu, Jin-Hao
    Luo, Chi-Hung
    Shiue, Yow-Ling
    CANCERS, 2023, 15 (04)
  • [49] A Method for Polyp Segmentation Through U-Net Network
    Santone, Antonella
    Cesarelli, Mario
    Mercaldo, Francesco
    BIOENGINEERING-BASEL, 2025, 12 (03):
  • [50] A Method for Retina Segmentation by Means of U-Net Network
    Santone, Antonella
    De Vivo, Rosamaria
    Recchia, Laura
    Cesarelli, Mario
    Mercaldo, Francesco
    ELECTRONICS, 2024, 13 (22)