2∞-Selmer rank parities via the Prym construction

被引:0
|
作者
Docking, Jordan [1 ]
机构
[1] UCL, London, England
关键词
Prym varieties; Jacobians; Ranks; Parity conjecture; Genus; 2; curves; 3; ELLIPTIC-CURVES; VARIETIES;
D O I
10.1016/j.jnt.2024.06.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive a local formula for the parity of the 2 infinity-Selmer infinity-Selmer rank of Jacobians of curves of genus 2 or 3 which admit an unramified double cover. We give an explicit example to show how this local formula gives rank parity predictions against which the 2-parity conjecture may be tested. Our results yield applications to the parity conjecture for semistable curves of genus 3. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页码:208 / 225
页数:18
相关论文
共 50 条
  • [31] Parities on 2-knots and 2-links
    Fedoseev, Denis A.
    Manturov, Vassily O.
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2016, 25 (14)
  • [32] The new construction of rank codes
    Kshevetskiy, A
    Gabidulin, E
    2005 IEEE International Symposium on Information Theory (ISIT), Vols 1 and 2, 2005, : 2105 - 2108
  • [33] The One-Dimensional Micropolar Theory of Elastic Rods Basic Parities Construction
    Ilyukhin, A. A.
    Timoshenko, D. V.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2008, 8 (04): : 52 - 61
  • [34] The effect of twisting on the 2-Selmer group
    Swinnerton-Dyer, Sir Peter
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 145 : 513 - 526
  • [35] The nomination verb construction: now catapulted to (the rank of) construction!
    Metairy, Justine
    7E CONGRES MONDIAL DE LINGUISTIQUE FRANCAISE, 2020, 78
  • [36] Calculation of Purchasing Power Parities for Pharmaceutical Products via EURIPID database
    Habl, C.
    Zuba, M.
    EUROPEAN JOURNAL OF PUBLIC HEALTH, 2022, 32
  • [37] Construction of a linear filtration for bundles of rank 2 on PZ1
    Smirnov, A. L.
    Yakovenko, S. S.
    SBORNIK MATHEMATICS, 2017, 208 (04) : 568 - 584
  • [39] A CM construction for curves of genus 2 with p-rank 1
    O'Connor, Laura Hitt
    McGuire, Gary
    Naehrig, Michael
    Streng, Marco
    JOURNAL OF NUMBER THEORY, 2011, 131 (05) : 920 - 935
  • [40] CONSTRUCTION OF A CLASS OF TORSION-FREE ABELIAN GROUPS OF RANK 2
    张英伯
    A Monthly Journal of Science, 1983, (07) : 869 - 873