Solving the eigenvalue complementarity problem using a quasi-Newton algorithm

被引:0
|
作者
Arenas, Favian [1 ]
Arias, Carlos [1 ]
Perez, Rosana [1 ]
机构
[1] Univ Cauca, Dept Matemat, Popayan, Colombia
关键词
eigenvalue complementarity; nonlinear complementarity problem; nonlinear programming; quasi-Newton;
D O I
10.18257/raccefyn.1623
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
In this article we consider the complementarity eigenvalue problem, which is of great interest to many researchers due to its numerous applications in Engineering and Physics. We approach its solution as a nonlinear complementarity problem using a quasi-Newton method, a type of method that, as far as we know, has not been used for this purpose. We verify that the problem satisfies certain hypotheses that allow the use of a global quasiNewton algorithm and we analyze its numerical performance. Numerical tests show the efficiency of the algorithm used and make it a good alternative to solve complementary eigenvalue problems.
引用
收藏
页码:325 / 338
页数:14
相关论文
共 50 条
  • [31] BFGS quasi-Newton location algorithm using TDOAs and GROAs
    Benjian Hao
    Zan Li State
    JournalofSystemsEngineeringandElectronics, 2013, 24 (03) : 341 - 348
  • [32] On quasi-Newton methods with modified quasi-Newton equation
    Xiao, Wei
    Sun, Fengjian
    PROCEEDINGS OF 2008 INTERNATIONAL PRE-OLYMPIC CONGRESS ON COMPUTER SCIENCE, VOL II: INFORMATION SCIENCE AND ENGINEERING, 2008, : 359 - 363
  • [33] A new smoothing quasi-Newton method for nonlinear complementarity problems
    Buhmiler, Sandra
    Krejic, Natasa
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 211 (02) : 141 - 155
  • [34] A NONSMOOTH GLOBAL QUASI-NEWTON METHOD FOR NONLINEAR COMPLEMENTARITY PROBLEMS
    Andres Arias, Carlos
    Jairo Martinez, Hector
    Perez, Rosana
    PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (01): : 1 - 15
  • [35] Disguised and new quasi-Newton methods for nonlinear eigenvalue problems
    Jarlebring, E.
    Koskela, A.
    Mele, G.
    NUMERICAL ALGORITHMS, 2018, 79 (01) : 311 - 335
  • [36] Disguised and new quasi-Newton methods for nonlinear eigenvalue problems
    E. Jarlebring
    A. Koskela
    G. Mele
    Numerical Algorithms, 2018, 79 : 311 - 335
  • [37] On the convergence rate of a quasi-Newton method for inverse eigenvalue problems
    Chan, RH
    Xu, SF
    Zhou, HM
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (02) : 436 - 441
  • [38] A QUASI-NEWTON METHOD FOR SOLVING NONLINEAR ALGEBRAIC EQUATIONS
    KIM, S
    TEWARSON, RP
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1992, 24 (04) : 93 - 97
  • [39] Particle swarm optimization with quasi-newton local search for solving economic dispatch problem
    dos Santos Coelho, Leandro
    Mariani, Viviana Cocco
    2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 3109 - +
  • [40] A PARALLEL QUASI-NEWTON ALGORITHM FOR UNCONSTRAINED OPTIMIZATION
    CHEN, Z
    FEI, P
    ZHENG, H
    COMPUTING, 1995, 55 (02) : 125 - 133