A hybrid approach for efficient feature selection in anomaly intrusion detection for IoT networks

被引:7
|
作者
Ayad, Aya G. [1 ]
Sakr, Nehal A. [1 ]
Hikal, Noha A. [1 ]
机构
[1] Mansoura Univ, Fac Comp & Informat, Informat Technol Dept, Mansoura 35516, Egypt
来源
JOURNAL OF SUPERCOMPUTING | 2024年 / 80卷 / 19期
关键词
Internet of Things; Intrusion detection system; Machine learning; Real-time; Feature selection;
D O I
10.1007/s11227-024-06409-x
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The exponential growth of Internet of Things (IoT) devices underscores the need for robust security measures against cyber-attacks. Extensive research in the IoT security community has centered on effective traffic detection models, with a particular focus on anomaly intrusion detection systems (AIDS). This paper specifically addresses the preprocessing stage for IoT datasets and feature selection approaches to reduce the complexity of the data. The goal is to develop an efficient AIDS that strikes a balance between high accuracy and low detection time. To achieve this goal, we propose a hybrid feature selection approach that combines filter and wrapper methods. This approach is integrated into a two-level anomaly intrusion detection system. At level 1, our approach classifies network packets into normal or attack, with level 2 further classifying the attack to determine its specific category. One critical aspect we consider is the imbalance in these datasets, which is addressed using the Synthetic Minority Over-sampling Technique (SMOTE). To evaluate how the selected features affect the performance of the machine learning model across different algorithms, namely Decision Tree, Random Forest, Gaussian Naive Bayes, and k-Nearest Neighbor, we employ benchmark datasets: BoT-IoT, TON-IoT, and CIC-DDoS2019. Evaluation metrics encompass detection accuracy, precision, recall, and F1-score. Results indicate that the decision tree achieves high detection accuracy, ranging between 99.82 and 100%, with short detection times ranging between 0.02 and 0.15 s, outperforming existing AIDS architectures for IoT networks and establishing its superiority in achieving both accuracy and efficient detection times.
引用
收藏
页码:26942 / 26984
页数:43
相关论文
共 50 条
  • [31] Artificial immune system based intrusion detection: anomaly detection and feature selection
    Abas, Eman Abd El Raoof
    Abdelkader, Hatem
    Keshk, Arabi
    2015 IEEE SEVENTH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INFORMATION SYSTEMS (ICICIS), 2015, : 542 - 546
  • [32] Shielding networks: enhancing intrusion detection with hybrid feature selection and stack ensemble learning
    Alsaffar, Ali Mohammed
    Nouri-Baygi, Mostafa
    Zolbanin, Hamed M.
    JOURNAL OF BIG DATA, 2024, 11 (01)
  • [33] A Hybrid Classification Approach for Intrusion Detection in IoT Network
    Choudhary, Sarika
    Kesswani, Nishtha
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2021, 80 (09): : 809 - 816
  • [34] A Hierarchical Hybrid Intrusion Detection Approach in IoT Scenarios
    Bovenzi, Giampaolo
    Aceto, Giuseppe
    Ciuonzo, Domenico
    Persico, Valerio
    Pescape, Antonio
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [35] A Framework for Efficient Network Anomaly Intrusion Detection with Features Selection
    Anwer, Hebatallah Mostafa
    Farouk, Mohamed
    Abdel-Hamid, Ayman
    2018 9TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2018, : 157 - 162
  • [36] An Efficient Deep Learning Approach To IoT Intrusion Detection
    Cao, Jin
    Lin, Liwei
    Ma, Ruhui
    Guan, Haibing
    Tian, Mengke
    Wang, Yong
    COMPUTER JOURNAL, 2022, 65 (11): : 2870 - 2879
  • [37] Feature selection for intrusion detection system in Internet-of-Things (IoT)
    Nimbalkar, Pushparaj
    Kshirsagar, Deepak
    ICT EXPRESS, 2021, 7 (02): : 177 - 181
  • [38] Feature selection of intrusion detection data using a hybrid genetic algorithm/KNN approach
    Middlemiss, M
    Dick, G
    DESIGN AND APPLICATION OF HYBRID INTELLIGENT SYSTEMS, 2003, 104 : 519 - 527
  • [39] Hybrid Feature Selection Models for Machine Learning Based Botnet Detection in IoT Networks
    Guerra-Manzanares, Alejandro
    Nomm, Sven
    Bahsi, Hayretdin
    2019 INTERNATIONAL CONFERENCE ON CYBERWORLDS (CW), 2019, : 324 - 327
  • [40] A hybrid machine learning approach for feature selection in designing intrusion detection systems (IDS) model for distributed computing networks
    Khah, Yashar Pourardebil
    Shirvani, Mirsaeid Hosseini
    Motameni, Homayun
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):