Research on Traffic Sign Object Detection Algorithm Based on Deep Learning

被引:0
|
作者
Sun, Mingyang [1 ]
Tian, Ying [2 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Comp Sci & Software Engn, Software Engn, Anshan 114051, Liaoning, Peoples R China
[2] Univ Sci & Technol Liaoning, Sch Comp Sci & Software Engn, Anshan 114051, Liaoning, Peoples R China
关键词
Traffic sign detection; YOLOv7; CBAM; CoordConv;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Traffic mark detection and identification play a key character in the development of driverless and intelligent transportation systems, offering significant assistance in ensuring the safety of people's daily travels. However, the detection effect of traffic signs is affected by many target categories, small targets, and low recognition accuracy, making traffic sign detection more challenging than target detection in general scenarios. In this paper, an improved YOLOv7 network (YOLOv7-COORD) is entered. Foremost, increase CBAM attention module at the connection between backbone and neck network of YOLOv7 to enhance the expression ability of neural networks through the attention mechanism, emphasizing important features and ignoring minor features to enhance the efficiency and precision of the network. Secondly, By adding CoordConv before the upsampling of the neck and before the detection head output, the network can better feel the location message in the characteristic map. Finally, a detection head generated by the low-level, high-resolution characteristic map is added to enhance the recognition accuracy of small target object. The abundance of experimental data demonstrates that the impression of the improved YOLOv7-COORD model is superior to that of the original YOLOv7 model, and the average accuracy of (mAP@0.5) on TT100K datasets is 3.2% higher than that of YOLOv7, reaching 85.4%. In summary, the improved YOLOv7-COORD model can better detect targets in traffic sign images.
引用
收藏
页码:1562 / 1568
页数:7
相关论文
共 50 条
  • [21] Research on traffic sign detection algorithm based on improved SSD in complex environments
    Zhang, Hong
    Zhang, Wei
    Wang, Wanqi
    Li, Xinlong
    Zhang, Anyu
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (11)
  • [22] Research on Pedestrian Detection Algorithm Based on Deep Learning
    Wang, Ying
    Tian, Ying
    IAENG International Journal of Computer Science, 2023, 50 (04)
  • [23] RESEARCH ON OPTIMIZATION OF VISUAL OBJECT TRACKING ALGORITHM BASED ON DEEP LEARNING
    Liu, Xiaolong
    Rodelas, Nelson C.
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2024, 25 (06): : 5603 - 5613
  • [24] Object Detection Analysis Study in Images based on Deep Learning Algorithm
    Hary, Christian
    Mandala, Satria
    2022 INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ITS APPLICATIONS (ICODSA), 2022, : 226 - 231
  • [25] CGDINet: A Deep Learning-Based Salient Object Detection Algorithm
    Hu, Chengyu
    Guo, Jianxin
    Xie, Hanfei
    Zhu, Qing
    Yuan, Baoxi
    Gao, Yujie
    Ma, Xiangyang
    Chen, Jialu
    Tian, Juan
    IEEE ACCESS, 2025, 13 : 4697 - 4723
  • [26] Mexican traffic sign detection and classification using deep learning
    Castruita Rodriguez, Ruben
    Mendoza Carlos, Carlos
    Vergara Villegas, Osslan Osiris
    Cruz Sanchez, Vianey Guadalupe
    Ochoa Dominguez, Humberto de Jesus
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 202
  • [27] Indian traffic sign detection and recognition using deep learning
    Megalingam, Rajesh Kannan
    Thanigundala, Kondareddy
    Musani, Sreevatsava Reddy
    Nidamanuru, Hemanth
    Gadde, Lokesh
    INTERNATIONAL JOURNAL OF TRANSPORTATION SCIENCE AND TECHNOLOGY, 2023, 12 (03) : 683 - 699
  • [28] DeepSign: Deep Learning based Traffic Sign Recognition
    Li, Dong
    Zhao, Dongbin
    Chen, Yaran
    Zhang, Qichao
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [29] Traffic Sign Detection and Recognition Using YOLO Object Detection Algorithm: A Systematic Review
    Flores-Calero, Marco
    Astudillo, Cesar A.
    Guevara, Diego
    Maza, Jessica
    Lita, Bryan S.
    Defaz, Bryan
    Ante, Juan S.
    Zabala-Blanco, David
    Armingol Moreno, Jose Maria
    MATHEMATICS, 2024, 12 (02)
  • [30] Evaluation Method of Deep Learning-Based Embedded Systems for Traffic Sign Detection
    Lopez-Montiel, Miguel
    Orozco-Rosas, Ulises
    Sanchez-Adame, Moises
    Picos, Kenia
    Ross, Oscar Humberto Montiel
    IEEE ACCESS, 2021, 9 : 101217 - 101238