Optical study of combustion stability in dual fuel approach using ammonia and high reactivity fuel

被引:6
|
作者
Wen, Mingsheng [1 ]
Cui, Yanqing [2 ,3 ]
Liu, Haifeng [1 ]
Ming, Zhenyang [1 ]
Yao, Mingfa [1 ]
机构
[1] Tianjin Univ, State Key Lab Engines, Tianjin 300072, Peoples R China
[2] Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Dept Ind & Syst Engn, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Ammonia; High reactivity fuel; Misfire reasons; Combustion stability; Optical diagnostics; PARTIALLY PREMIXED COMBUSTION; IGNITION; DIAGNOSTICS;
D O I
10.1016/j.enconman.2024.118910
中图分类号
O414.1 [热力学];
学科分类号
摘要
Ammonia, as a zero-carbon fuel, is considered to be an ideal alternative fuel for a reduction of carbon dioxide emissions. Owing to low laminar flame speed and high ignition energy, the utilization of pure ammonia in powerplant system still presents severe challenges. To solve these issues, the dual fuel combustion of high reactivity fuel and ammonia is a promising solution. However, the dual fuel combustion stability of ammonia and high reactivity fuel has not been clearly understood. In present study, the misfire reasons are investigated using various optical diagnostic methods. Results demonstrate that the misfire reasons are divided into two aspects. One is that the addition of ammonia increases the temperature and pressure required for direction injection fuel auto-ignition, which makes it difficult to generate auto-ignition site, resulting in misfire. The other is that the low flame development speed and degradation of the in-cylinder temperature and pressure causes the difficulty in the further flame development, which results in misfire. A collaborative regulation approach of engine operating condition and direction injection fuel reactivity is proposed to improve combustion stability, which achieves 93% ammonia energy ratio. At 93% ammonia energy ratio, increasing direction injection pressure from 600 bar to 1000 bar decrease combustion stability. The local equivalence ratio of direction injection fuel that can ignite ammonia stably is mainly concentrated between 0.56 and 0.86 in the conditions of 93% ammonia energy ratio and 22 bar in-cylinder pressure. Compared with the in-cylinder temperature, the main factor in determining combustion stability is local equivalence ratio of direction injection fuel. The addition of ammonia prolongs the low temperature reaction and constrains the high temperature reaction of direction injection fuel. In brief, the combustion stability and ammonia energy ratio can be improved simultaneously using the collaborative regulation.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] An Optical Investigation of Ignition Processes in Fuel Reactivity Controlled PCCI Combustion
    Splitter, Derek
    Kokjohn, Sage
    Rein, Keith
    Hanson, Reed
    Sanders, Scott
    Reitz, Rolf
    SAE INTERNATIONAL JOURNAL OF ENGINES, 2010, 3 (01) : 142 - 162
  • [32] Optical investigation on effects of diesel injection strategy on ammonia/ diesel dual fuel combustion characteristics and flame development
    Zeng, Wenpeng
    Sun, Wanchen
    Guo, Liang
    Zhang, Hao
    Yan, Yuying
    Lin, Shaodian
    Zhu, Genan
    Jiang, Mengqi
    Yu, Changyou
    FUEL, 2024, 363
  • [33] Combustion and Emission Characteristics of an Ammonia-Biofuel Dual-Fuel Engine
    Cai K.
    Wang W.
    Zhao Z.
    Ma X.
    Qi Y.
    Li L.
    Wang Z.
    Qiche Gongcheng/Automotive Engineering, 2024, 46 (04): : 626 - 681
  • [34] Simulation of ammonia combustion in dual-fuel compression-ignition engine
    Lasocki, J.
    Bednarski, M.
    Sikora, M.
    INTERNATIONAL CONFERENCE ON THE SUSTAINABLE ENERGY AND ENVIRONMENTAL DEVELOPMENT, 2019, 214
  • [35] Effect of fuel injection spatial and temporal arrangement on high-pressure direct-injection ammonia/diesel dual-fuel combustion
    Yang, Rui
    Yu, Zining
    Yue, Zongyu
    Yao, Mingfa
    FUEL, 2025, 387
  • [36] Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel
    Reiter, Aaron J.
    Kong, Song-Charng
    FUEL, 2011, 90 (01) : 87 - 97
  • [37] Characteristics of high-pressure liquid ammonia sprays and combustion process in ammonia/diesel HPDI dual-fuel engines
    He, Xu
    Liu, Yalong
    Zhang, He
    Bi, Sinan
    Xu, Kai
    Zhao, Jin
    JOURNAL OF THE ENERGY INSTITUTE, 2025, 120
  • [38] Impact of low reactivity fuel type on low load combustion, emissions, and cyclic variations of diesel-ignited dual fuel combustion
    Jha, Prabhat R.
    Partridge, Kendyl R.
    Krishnan, Sundar R.
    Srinivasan, Kalyan K.
    INTERNATIONAL JOURNAL OF ENGINE RESEARCH, 2023, 24 (01) : 42 - 63
  • [39] A quantitative study on the combustion and emission characteristics of an Ammonia-Diesel Dual-fuel (ADDF) engine
    Pei, Yiqiang
    Wang, Decheng
    Jin, Shouying
    Gu, Yuncheng
    Wu, Chunling
    Wu, Binyang
    FUEL PROCESSING TECHNOLOGY, 2023, 250
  • [40] Experimental study on the effect of combustion and emission performance of biodiesel-ammonia dual-fuel engine
    Qiu, Ye
    Wei, Haijun
    Zhou, Daping
    Zhou, Xinyi
    Li, Tie
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2024, 16 (04)