LightingFormer: Transformer-CNN hybrid network for low-light image enhancement

被引:2
|
作者
Bi, Cong [1 ]
Qian, Wenhua [1 ]
Cao, Jinde [2 ]
Wang, Xue [1 ]
机构
[1] Yunnan Univ, Sch Informat Sci & Engn, Kunming 650500, Peoples R China
[2] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
来源
COMPUTERS & GRAPHICS-UK | 2024年 / 124卷
关键词
Low-light image enhancement; Swin transformer; Attention mechanism; Deep learning;
D O I
10.1016/j.cag.2024.104089
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Recent deep-learning methods have shown promising results in low-light image enhancement. However, current methods often suffer from noise and artifacts, and most are based on convolutional neural networks, which have limitations in capturing long-range dependencies resulting in insufficient recovery of extremely dark parts in low-light images. To tackle these issues, this paper proposes a novel Transformer-based low- light image enhancement network called LightingFormer. Specifically, we propose a novel Transformer-CNN hybrid block that captures global and local information via mixed attention. It combines the advantages of the Transformer in capturing long-range dependencies and the advantages of CNNs in extracting low-level features and enhancing locality to recover extremely dark parts and enhance local details in low-light images. Moreover, we adopt the U-Net discriminator to enhance different regions in low-light images adaptively, avoiding overexposure or underexposure, and suppressing noise and artifacts. Extensive experiments show that our method outperforms the state-of-the-art methods quantitatively and qualitatively. Furthermore, the application to object detection demonstrates the potential of our method in high-level vision tasks.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] HyFormer: a hybrid transformer-CNN architecture for retinal OCT image segmentation
    Jiang, Qingxin
    Fan, Ying
    Li, Menghan
    Fang, Sheng
    Zhu, Weifang
    Xiang, Dehui
    Peng, Tao
    Chen, Xinjian
    Xu, Xun
    Shi, Fei
    BIOMEDICAL OPTICS EXPRESS, 2024, 15 (11): : 6156 - 6170
  • [42] DEANet: Decomposition Enhancement and Adjustment Network for Low-Light Image Enhancement
    Jiang, Yonglong
    Li, Liangliang
    Zhu, Jiahe
    Xue, Yuan
    Ma, Hongbing
    TSINGHUA SCIENCE AND TECHNOLOGY, 2023, 28 (04): : 743 - 753
  • [43] Transformer-CNN hybrid network for improving PET time of flight prediction
    Feng, Xuhui
    Muhashi, Amanjule
    Onishi, Yuya
    Ota, Ryosuke
    Liu, Huafeng
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (11):
  • [44] A transformer-CNN for deep image inpainting forensics
    Zhu, Xinshan
    Lu, Junyan
    Ren, Honghao
    Wang, Hongquan
    Sun, Biao
    VISUAL COMPUTER, 2023, 39 (10): : 4721 - 4735
  • [45] A deep Retinex network for underwater low-light image enhancement
    Ji, Kai
    Lei, Weimin
    Zhang, Wei
    MACHINE VISION AND APPLICATIONS, 2023, 34 (06)
  • [46] Deep Pyramid Network for Low-Light Endoscopic Image Enhancement
    Yue, Guanghui
    Gao, Jie
    Cong, Runmin
    Zhou, Tianwei
    Li, Leida
    Wang, Tianfu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (05) : 3834 - 3845
  • [47] Wavelet-based enhancement network for low-light image
    Hu, Xiaopeng
    Liu, Kang
    Yin, Xiangchen
    Gao, Xin
    Jiang, Pingsheng
    Qian, Xu
    DISPLAYS, 2025, 87
  • [48] Hybrid transformer-CNN with boundary-awareness network for 3D medical image segmentation
    Jianfei He
    Canhui Xu
    Applied Intelligence, 2023, 53 : 28542 - 28554
  • [49] Frequency-aware network for low-light image enhancement
    Shang, Kai
    Shao, Mingwen
    Qiao, Yuanjian
    Liu, Huan
    COMPUTERS & GRAPHICS-UK, 2024, 118 : 210 - 219
  • [50] Adversarial Context Aggregation Network for Low-Light Image Enhancement
    Shin, Yong-Goo
    Sagong, Min-Cheol
    Yeo, Yoon-Jae
    Ko, Sung-Jea
    2018 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2018, : 617 - 621