High-Performance Supercapacitors Using Compact Carbon Hydrogels Derived from Polybenzoxazine

被引:2
|
作者
Asrafali, Shakila Parveen [1 ]
Periyasamy, Thirukumaran [1 ]
Lee, Jaewoong [1 ]
机构
[1] Yeungnam Univ, Dept Fiber Syst Engn, 280 Daehak Ro, Gyeongbuk 38541, South Korea
关键词
polybenzoxazine; calcination; aerogel; porous structure; electrode materials; PULSED-LASER IRRADIATION; SURFACE MODIFICATION; MECHANICAL-PROPERTIES; OXIDE; CR2O3; MGO; NANOPARTICLES; SHEETS;
D O I
10.3390/gels10080509
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polybenzoxazine (PBz) aerogels hold immense potential, but their conventional production methods raise environmental and safety concerns. This research addresses this gap by proposing an eco-friendly approach for synthesizing high-performance carbon derived from polybenzoxazine. The key innovation lies in using eugenol, ethylene diamine, and formaldehyde to create a polybenzoxazine precursor. This eliminates hazardous solvents by employing the safer dimethyl sulfoxide. An acidic catalyst plays a crucial role, not only in influencing the microstructure but also in strengthening the material's backbone by promoting inter-chain connections. Notably, this method allows for ambient pressure drying, further enhancing its sustainability. The polybenzoxazine acts as a precursor to produce two different carbon materials. The carbon material produced from the calcination of PBz is denoted as PBZC, and the carbon material produced from the gelation and calcination of PBz is denoted as PBZGC. The structural characterization of these carbon materials was analyzed through different techniques, such as XRD, Raman, XPS, and BET analyses. BET analysis showed increased surface of 843 m2 g-1 for the carbon derived from the gelation method (PBZGC). The electrochemical studies of PBZC and PBZGC imply that a well-defined morphology, along with suitable porosity, paves the way for increased conductivity of the materials when used as electrodes for supercapacitors. This research paves the way for utilizing heteroatom-doped, polybenzoxazine aerogel-derived carbon as a sustainable and high-performing alternative to traditional carbon materials in energy storage devices.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] N-Doped Mesoporous Carbon Prepared from a Polybenzoxazine Precursor for High Performance Supercapacitors
    Thirukumaran, Periyasamy
    Atchudan, Raji
    Shakila Parveen, Asrafali
    Santhamoorthy, Madhappan
    Ramkumar, Vanaraj
    Kim, Seong-Cheol
    POLYMERS, 2021, 13 (13)
  • [32] Freestanding electrodes with polyaniline/Au derived from electrospun carbon nanofibers for high-performance supercapacitors
    Bu, Yan
    Zou, Yunwei
    Cang, Ruibai
    Zhou, Xuejiao
    Yu, Peng
    Zhang, Mingyi
    CRYSTENGCOMM, 2024, 26 (36) : 4985 - 4994
  • [33] Multicomponent doped hierarchically porous carbon derived from natural polyelectrolyte for high-performance supercapacitors
    Lyu, Tao
    Lin, Shiying
    Mo, Lanlan
    Wang, Feijun
    Shao, Ziqiang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (12) : 17056 - 17067
  • [34] High-performance carbon derived from chickpea skin via microwave and slow pyrolysis for supercapacitors
    Murali, G.
    Babu, G. Anandha
    Ramesh, R.
    Ponnusamy, S.
    Harish, S.
    Navaneethan, M.
    MATERIALS LETTERS, 2022, 314
  • [35] Nitrogen-doped Porous Carbon Derived from Rapeseed residues for High-performance Supercapacitors
    Sun, Kanjun
    Guo, Dongyang
    Zheng, Xiaoping
    Zhu, Yanrong
    Zheng, Yanping
    Ma, Mingguang
    Zhao, Guohu
    Ma, Guofu
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (06): : 4743 - 4754
  • [36] Hierarchical porous structure carbon nanosheets derived from sodium lignosulfonate for high-performance supercapacitors
    Wu, Dichao
    Chen, Changzhou
    Li, Jihui
    Jian, Xiaopeng
    Wang, Ao
    Sun, Kang
    Jiang, Jianchun
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (48) : 21271 - 21278
  • [37] Porous active carbon derived from lotus stalk as electrode material for high-performance supercapacitors
    Zhang, Liang
    Yuan, Jiao
    Su, Siyu
    Cui, Yifan
    Shi, Wei
    Zhu, Xiaohong
    JOURNAL OF WOOD CHEMISTRY AND TECHNOLOGY, 2020, 41 (01) : 46 - 57
  • [38] Activated carbon derived from walnut green peel as an electrode material for high-performance supercapacitors
    Na Tian
    Man Gao
    Xuan-He Liu
    Xiaoming Liu
    Tiantian Yang
    Wenke Xie
    Jing Wu
    Biomass Conversion and Biorefinery, 2023, 13 : 16781 - 16789
  • [39] A high-performance carbon derived from corn stover via microwave and slow pyrolysis for supercapacitors
    Jin, Hong
    Wang, Xiaomin
    Shen, Yanbin
    Gu, Zhengrong
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2014, 110 : 18 - 23
  • [40] Porous carbon derived from center part of the corn cob for high-performance symmetrical supercapacitors
    Zhang, Lihua
    Li, Xinran
    Li, Lingyan
    Cheng, Xiaoyang
    Wu, Hao
    Zheng, Jinfeng
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 702