Robust adaptive LASSO in high-dimensional logistic regression

被引:0
|
作者
Basu, Ayanendranath [1 ]
Ghosh, Abhik [1 ]
Jaenada, Maria [2 ]
Pardo, Leandro [2 ]
机构
[1] Indian Stat Inst, Interdisciplinary Stat Res Unit, 203 BT Rd, Kolkata 700108, India
[2] Univ Complutense Madrid, Stat & OR, Plaza Ciencias 3, Madrid 28040, Spain
关键词
Density power divergence; High-dimensional data; Logistic regression; Oracle properties; Variable selection; VARIABLE SELECTION; GENE SELECTION; SPARSE REGRESSION; CLASSIFICATION; CANCER; MICROARRAYS; LIKELIHOOD; ALGORITHM; MODELS;
D O I
10.1007/s10260-024-00760-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Penalized logistic regression is extremely useful for binary classification with large number of covariates (higher than the sample size), having several real life applications, including genomic disease classification. However, the existing methods based on the likelihood loss function are sensitive to data contamination and other noise and, hence, robust methods are needed for stable and more accurate inference. In this paper, we propose a family of robust estimators for sparse logistic models utilizing the popular density power divergence based loss function and the general adaptively weighted LASSO penalties. We study the local robustness of the proposed estimators through its influence function and also derive its oracle properties and asymptotic distribution. With extensive empirical illustrations, we demonstrate the significantly improved performance of our proposed estimators over the existing ones with particular gain in robustness. Our proposal is finally applied to analyse four different real datasets for cancer classification, obtaining robust and accurate models, that simultaneously performs gene selection and patient classification.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] GFLASSO-LR: Logistic Regression with Generalized Fused LASSO for Gene Selection in High-Dimensional Cancer Classification
    Bir-Jmel, Ahmed
    Douiri, Sidi Mohamed
    Bernoussi, Souad El
    Maafiri, Ayyad
    Himeur, Yassine
    Atalla, Shadi
    Mansoor, Wathiq
    Al-Ahmad, Hussain
    COMPUTERS, 2024, 13 (04)
  • [22] A MODEL OF DOUBLE DESCENT FOR HIGH-DIMENSIONAL LOGISTIC REGRESSION
    Deng, Zeyu
    Kammoun, Abla
    Thrampoulidis, Christos
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4267 - 4271
  • [23] Inference for the case probability in high-dimensional logistic regression
    Guo, Zijian
    Rakshit, Prabrisha
    Herman, Daniel S.
    Chen, Jinbo
    Journal of Machine Learning Research, 2021, 22
  • [24] Weak Signals in High-Dimensional Logistic Regression Models
    Reangsephet, Orawan
    Lisawadi, Supranee
    Ahmed, Syed Ejaz
    PROCEEDINGS OF THE THIRTEENTH INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, VOL 1, 2020, 1001 : 121 - 133
  • [25] Scale calibration for high-dimensional robust regression
    Loh, Po-Ling
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 5933 - 5994
  • [26] Robust Ridge Regression for High-Dimensional Data
    Maronna, Ricardo A.
    TECHNOMETRICS, 2011, 53 (01) : 44 - 53
  • [27] Adaptive group Lasso for high-dimensional generalized linear models
    Wang, Mingqiu
    Tian, Guo-Liang
    STATISTICAL PAPERS, 2019, 60 (05) : 1469 - 1486
  • [28] Adaptive group Lasso for high-dimensional generalized linear models
    Mingqiu Wang
    Guo-Liang Tian
    Statistical Papers, 2019, 60 : 1469 - 1486
  • [29] Hi-LASSO: High-Dimensional LASSO
    Kim, Youngsoon
    Hao, Jie
    Mallavarapu, Tejaswini
    Park, Joongyang
    Kang, Mingon
    IEEE ACCESS, 2019, 7 : 44562 - 44573
  • [30] Robust Adaptive Lasso method for parameter's estimation and variable selection in high-dimensional sparse models
    Wahid, Abdul
    Khan, Dost Muhammad
    Hussain, Ijaz
    PLOS ONE, 2017, 12 (08):