Progress and Challenges in Buffer Layers Between Cathode Materials and Sulfide Solid Electrolytes in All-Solid-State Batteries

被引:3
|
作者
Byeon, Yun Seong [1 ]
Kim, Dongil [2 ]
Han, Sang A. [2 ]
Kim, Jung Ho [2 ]
Park, Min-Sik [1 ]
机构
[1] Kyung Hee Univ, Integrated Educ Inst Frontier Sci & Technol BK21 4, Dept Adv Mat Engn Informat & Elect, 1732 Deogyeong daero, Yongin 17104, South Korea
[2] Univ Wollongong, Fac Engn & Informat Sci, Inst Superconducting & Elect Mat, Squires Way, N Wollongong, NSW 2500, Australia
来源
基金
新加坡国家研究基金会;
关键词
all solid-state batteries; cathode; interface; solid electrolyte; space charge layer; LI-ION BATTERIES; INTERFACE STABILITY; OXIDE CATHODE; ELECTROCHEMICAL PROPERTIES; SURFACE MODIFICATION; ARGYRODITE LI6PS5CL; LITHIUM BATTERIES; LICOO2; CONDUCTIVITY; PERFORMANCE;
D O I
10.1002/aesr.202400135
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
All-solid-state batteries (ASSBs), configured with solid electrolytes, have received considerable attention as a future energy solution across diverse sectors of modern society. Unlike conventional liquid electrolytes in particular, sulfide solid electrolytes have various advantages, such as high ionic conductivity (>10(-3) S cm(-1)), good ductile properties, and thermal stability. Despite these advantages, the practical application of sulfide solid electrolytes in ASSBs is still limited due to their interfacial instability with commercial cathode materials. Unfortunately, the spontaneous formation of a space charge layer (SCL) at the interface between the cathode material and the solid electrolyte leads to heightened interfacial resistance, obstructing Li+ transport. To address this issue, proper interfacial engineering is still required to facilitate smooth Li+ migration across the interfaces. In this respect, various functional materials have been under exploration as buffer layers, which are intended to suppress the formation of the SCL at these interfaces. Herein, focus is given on the critical significance of these buffer layers between cathode materials and sulfide solid electrolytes in the development of ASSBs. Considering the present limitations, future research directions for next-generation ASSBs are discussed. These insights are poised to offer valuable guidance for the strategic design and development of highly reliable ASSBs.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] All-solid-state lithium batteries using Ti-based cathode materials and sulfide solid electrolyte
    Jung, Yoon Seok
    Shin, Bum Ryong
    Nam, Young Jin
    Kim, Jin Wook
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [22] Preparation of Lithium Sulfide-Based Cathode Materials and Application to All-Solid-State Batteries
    Matsuda A.
    Hikima K.
    Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2024, 71 (03): : 75 - 80
  • [23] Issues and Challenges for Bulk-Type All-Solid-State Rechargeable Lithium Batteries using Sulfide Solid Electrolytes
    Jung, Yoon Seok
    Oh, Dae Yang
    Nam, Young Jin
    Park, Kern Ho
    ISRAEL JOURNAL OF CHEMISTRY, 2015, 55 (05) : 472 - 485
  • [24] Composite cathode for all-solid-state lithium batteries: Progress and perspective
    Zeng, Zhen
    Cheng, Jun
    Li, Yuanyuan
    Zhang, Hongqiang
    Li, Deping
    Liu, Hongbin
    Ji, Fengjun
    Sun, Qing
    Ci, Lijie
    MATERIALS TODAY PHYSICS, 2023, 32
  • [25] High-Performance All-Solid-State Batteries Enabled by Intimate Interfacial Contact Between the Cathode and Sulfide-Based Solid Electrolytes
    Kim, Jeongheon
    Kim, Min Ji
    Kim, Jaeik
    Lee, Jin Woong
    Park, Joonhyeok
    Wang, Sung Eun
    Lee, Seungwoo
    Kang, Yun Chan
    Paik, Ungyu
    Jung, Dae Soo
    Song, Taeseup
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (12)
  • [26] A Review on the Wet Chemical Synthesis of Sulfide Solid Electrolytes for All-Solid-State Li Batteries
    Ha, Yoon-Cheol
    JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2022, 25 (03): : 95 - 104
  • [27] Halogen chemistry of solid electrolytes in all-solid-state batteries
    Bijiao He
    Fang Zhang
    Yan Xin
    Chao Xu
    Xu Hu
    Xin Wu
    Yang Yang
    Huajun Tian
    Nature Reviews Chemistry, 2023, 7 : 826 - 842
  • [28] Halogen chemistry of solid electrolytes in all-solid-state batteries
    He, Bijiao
    Zhang, Fang
    Xin, Yan
    Xu, Chao
    Hu, Xu
    Wu, Xin
    Yang, Yang
    Tian, Huajun
    NATURE REVIEWS CHEMISTRY, 2023, 7 (12) : 826 - 842
  • [29] Composite solid electrolytes for all-solid-state lithium batteries
    Dirican, Mahmut
    Yan, Chaoyi
    Zhu, Pei
    Zhang, Xiangwu
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2019, 136 (27-46): : 27 - 46
  • [30] Revealing unprecedented cathode interface behavior in all-solid-state batteries with oxychloride solid electrolytes
    Zhao, Feipeng
    Zhang, Shumin
    Wang, Shuo
    Andrei, Carmen M.
    Yuan, Hui
    Zhou, Jigang
    Wang, Jian
    Zhuo, Zengqing
    Zhong, Yu
    Su, Han
    Kim, Jung Tae
    Yu, Ruizhi
    Gao, Yingjie
    Guo, Jinghua
    Sham, Tsun-Kong
    Mo, Yifei
    Sun, Xueliang
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (12) : 4055 - 4063