Self-assembled Si-based anode combined with electrostatic spinning method to realize high-performance lithium-ion batteries

被引:0
|
作者
Wang, Fangfang [1 ,2 ]
Jia, Fudong [1 ,2 ]
Pan, Jinghong [1 ]
Sun, Chuxiao [1 ]
Zhang, Ranshuo [1 ,2 ]
Yu, Furen [1 ]
Sang, Jingjing [1 ,2 ]
Qi, Wang [1 ]
机构
[1] Northeastern Univ, Coll Sci, Shenyang 110819, Peoples R China
[2] Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China
关键词
Si; CuO; CNFs; Lithium-ion batteries; HIGH VOLUMETRIC CAPACITY; LONG CYCLE LIFE; AT-C; NANOSPHERES; REACTIVITY; PARTICLES;
D O I
10.1016/j.jallcom.2024.176083
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Addressing the volume expansion when silicon and metal oxides alone are used as anode materials for lithium- ion batteries. This study used a simple self-assembly method and electrostatic spinning technique to prepare silicon@copper oxide@carbon nanofibres (CNFs) anodes with dual modification. The high rigidity of metal oxide CuO and the excellent cycling stability of CNFs effectively reduce the buildup of silicon particles, alleviate the volume expansion effect, and improve the electrical conductivity, which leads to better cycling stability and larger specific capacity of lithium-ion batteries. An excellent reversible specific capacity of 748.5 mAh g(-1) was observed after 800 cycles at a high current density of 1 A g(- 1). In addition, the surface of Si@CuO@CNFs electrodes remains smooth and undamaged after 800 cycles, and the increase in cross-sectional thickness is about 68 %, which is significantly smaller than the 300 % increase in cross-sectional thickness of pure Si anode and effectively improves the specific capacity of Li-ion batteries. This research optimizes the design of silicon-based anode materials with simple and mature process technology, which makes an indispensable contribution to developing high-efficiency, long-life, and environmentally friendly lithium-ion batteries. The easy availability and non-polluting nature of the materials used also effectively reduce the reliance on rare or expensive elements, minimize the production process's environmental impact, and vigorously promote the global energy transition and low-carbon green development strategy.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Multi-layered carbon coated Si-based composite as anode for lithium-ion batteries
    Su, Mingru
    Wan, Huafeng
    Liu, Yunjian
    Xiao, Wei
    Dou, Aichun
    Wang, Zhixing
    Guo, Huajun
    POWDER TECHNOLOGY, 2018, 323 : 294 - 300
  • [42] Si@Cu3Si nano-composite prepared by facile method as high-performance anode for lithium-ion batteries
    Zhang, Yao
    Zhu, Chaoye
    Ma, Zhihong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 851
  • [43] Self-assembled cauliflower-like FeS2 anchored into graphene foam as free-standing anode for high-performance lithium-ion batteries
    He, Jiarui
    Li, Qian
    Chen, Yuanfu
    Xu, Chen
    Zhou, Keren
    Wang, Xinqiang
    Zhang, Wanli
    Li, Yanrong
    CARBON, 2017, 114 : 111 - 116
  • [44] High-performance Si@C anode for lithium-ion batteries enabled by a novel structuring strategy
    Song, Jian
    Ke, Shengfeng
    Sun, Pengkai
    Yang, Dian
    Luo, Chengang
    Tian, Qinghua
    Liang, Cui
    Chen, Jizhang
    NANOSCALE, 2023, 15 (33) : 13790 - 13808
  • [45] Recycling waste crystalline-silicon solar cells: Application as high performance Si-based anode materials for lithium-ion batteries
    Wang Qi
    Meng Bi-cheng
    Du Yue-yong
    Xu Xiang-qun
    Zhou Zhe
    Ng, Boon K.
    Zhang Zong-liang
    Jiang Liang-xing
    Liu Fang-yang
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2022, 29 (09) : 2888 - 2898
  • [46] Thickness gradient promotes the performance of Si-based anode material for lithium-ion battery
    Guo, Zhenbin
    Yao, Haimin
    MATERIALS & DESIGN, 2020, 195
  • [47] Spherical Gr/Si/GO/C Composite as High-Performance Anode Material for Lithium-Ion Batteries
    Huang, Yuehua
    Peng, Jiao
    Luo, Jing
    Li, Wangwu
    Wu, Zhenyu
    Shi, Minhao
    Li, Xingxing
    Li, Neng
    Chang, Baobao
    Wang, Xianyou
    ENERGY & FUELS, 2020, 34 (06) : 7639 - 7647
  • [48] Optimized Porous Si/SiC Composite Spheres as High-Performance Anode Material for Lithium-Ion Batteries
    Zhang, Jiaming
    Tang, Jingjing
    Zhou, Xiangyang
    Jia, Ming
    Ren, Yongpeng
    Jiang, Min
    Hu, Tingjie
    Yang, Juan
    CHEMELECTROCHEM, 2019, 6 (02): : 450 - 455
  • [49] Cost-effective preparation of high-performance Si@C anode for lithium-ion batteries
    Li, Xiang
    Li, Kefan
    Yuan, Liang
    Han, Zewen
    Yan, Zeyuan
    Xu, Xiaohua
    Tang, Kai
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2024, 54 (12) : 2683 - 2697
  • [50] Preparation of a N-doped Si/Cu/C anode for high-performance lithium-ion batteries
    Xiang, Xiaolin
    Pan, Piao
    Li, Peidong
    Tu, Qiang
    Cui, Yuehua
    SUSTAINABLE ENERGY & FUELS, 2023, 7 (04) : 1041 - 1050