On the bandwidths of periodic approximations to discrete schrödinger operators

被引:0
|
作者
Haeming, Lian [1 ]
机构
[1] Queen Mary Univ London, Mile End Rd, London E1 4NS, England
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2024年 / 153卷 / 02期
关键词
ANDERSON LOCALIZATION; LYAPUNOV EXPONENT; SPECTRUM; PRODUCTS;
D O I
10.1007/s11854-024-0336-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study how the spectral properties of ergodic Schr & ouml;dinger operators are reflected in the asymptotic properties of its periodic approximation as the period tends to infinity. The first property we address is the asymptotics of the bandwidths on the logarithmic scale, which quantifies the sensitivity of the finite volume restriction to the boundary conditions. We show that the bandwidths can always be bounded from below in terms of the Lyapunov exponent. Under an additional assumption satisfied by i.i.d. potentials, we also prove a matching upper bound. Finally, we provide an additional assumption which is also satisfied in the i.i.d. case, under which the corresponding eigenvectors are exponentially localised with a localisation centre independent of the Floquet number.
引用
收藏
页码:489 / 517
页数:29
相关论文
共 50 条
  • [21] Long-Range Scattering for Discrete Schrödinger Operators
    Yukihide Tadano
    Annales Henri Poincaré, 2019, 20 : 1439 - 1469
  • [22] Inverse Problems, Trace Formulae for Discrete Schrödinger Operators
    Hiroshi Isozaki
    Evgeny Korotyaev
    Annales Henri Poincaré, 2012, 13 : 751 - 788
  • [23] On spatial conditioning of the spectrum of discrete Random Schr?dinger operators
    Lamarre, Pierre Yves Gaudreau
    Ghosal, Promit
    Liao, Yuchen
    JOURNAL OF SPECTRAL THEORY, 2022, 12 (03) : 1109 - 1153
  • [24] Ambarzumian-type Problems for Discrete Schrödinger Operators
    Burak Hatinoğlu
    Jerik Eakins
    William Frendreiss
    Lucille Lamb
    Sithija Manage
    Alejandra Puente
    Complex Analysis and Operator Theory, 2021, 15
  • [25] Dynamical Localization for Discrete and Continuous Random Schrödinger Operators
    F. Germinet
    S. De Bièvre
    Communications in Mathematical Physics, 1998, 194 : 323 - 341
  • [26] Multibump solutions for discrete periodic nonlinear Schrödinger equations
    Shiwang Ma
    Zhi-Qiang Wang
    Zeitschrift für angewandte Mathematik und Physik, 2013, 64 : 1413 - 1442
  • [27] Solutions for Discrete Periodic Schrödinger Equations with Spectrum 0
    Minbo Yang
    Wenxiong Chen
    Yanheng Ding
    Acta Applicandae Mathematicae, 2010, 110 : 1475 - 1488
  • [28] Gap Solitons in Periodic Discrete Schrödinger Equations with Nonlinearity
    Haiping Shi
    Acta Applicandae Mathematicae, 2010, 109 : 1065 - 1075
  • [29] Infiniteness of the Discrete Spectrum of Two-Particle Discrete Schrödinger Operators
    Sh. S. Lakaev
    Lobachevskii Journal of Mathematics, 2023, 44 : 2781 - 2789
  • [30] New Results for Periodic Discrete Nonlinear SchröDinger Equations
    Xu, Xiaoliang
    Chen, Huiwen
    Ouyang, Zigen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (05) : 5768 - 5780