Generalized multiscale finite element method for a nonlinear elastic strain-limiting Cosserat model

被引:0
|
作者
Ammosov, Dmitry [1 ]
Mai, Tina [2 ,3 ]
Galvis, Juan [4 ]
机构
[1] North Eastern Fed Univ, Computat Technol & Artificial Intelligence, Yakutsk 677980, Republic Of Sak, Russia
[2] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[3] Duy Tan Univ, Fac Nat Sci, Da Nang 550000, Vietnam
[4] Univ Nacl Colombia, Dept Matemat, Carrera 45 26-85,Edificio Uriel Gutierrez, Bogota, Colombia
基金
俄罗斯科学基金会;
关键词
Generalized multiscale finite element method; Adaptivity; Residual-based online multiscale basis; functions; Strain-limiting; Nonlinear Cosserat elasticity; Heterogeneous media; HOMOGENIZATION; GMSFEM; MATTER;
D O I
10.1016/j.jcp.2024.113428
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For nonlinear Cosserat elasticity, we consider multiscale methods in this paper. In particular, we explore the generalized multiscale finite element method (GMsFEM) to solve an isotropic Cosserat problem with strain-limiting property (ensuring bounded linearized strains even under high stresses). Such strain-limiting Cosserat model can find potential applications in solids and biological fibers. However, Cosserat media with naturally rotational degrees of freedom, nonlinear constitutive relations, high contrast, and heterogeneities may produce challenging multiscale characteristics in the solution, and upscaling by multiscale methods is necessary. Therefore, we utilize the offline and residual-based online (adaptive or uniform) GMsFEM in this context while handling the nonlinearity by Picard iteration. Through various two-dimensional experiments (for perforated, composite, and stochastically heterogeneous media with small and big strain-limiting parameters), our numerical results show the approaches' convergence, efficiency, and robustness. In addition, these results demonstrate that such approaches provide good accuracy, the online GMsFEM gives more accurate solutions than the offline one, and the online adaptive strategy has similar accuracy to the uniform one but with fewer degrees of freedom.
引用
收藏
页数:35
相关论文
共 50 条
  • [31] A generalized multiscale finite element method for the Brinkman equation
    Galvis, Juan
    Li, Guanglian
    Shi, Ke
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 280 : 294 - 309
  • [32] Generalized multiscale finite element method for elasticity equations
    Chung E.T.
    Efendiev Y.
    Fu S.
    GEM - International Journal on Geomathematics, 2014, 5 (2) : 225 - 254
  • [33] A weak Galerkin generalized multiscale finite element method
    Mu, Lin
    Wang, Junping
    Ye, Xiu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 305 : 68 - 81
  • [34] A Generalized Multiscale Finite Element Method for Thermoelasticity Problems
    Vasilyeva, Maria
    Stalnov, Denis
    NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016), 2017, 10187 : 713 - 720
  • [35] Multiscale model reduction for a thermoelastic model with phase change using a generalized multiscale finite-element method
    Ammosov, D. A.
    Vasil'ev, V. I.
    Vasil'eva, M. V.
    Stepanov, S. P.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2022, 211 (02) : 595 - 610
  • [36] Multiscale model reduction for a thermoelastic model with phase change using a generalized multiscale finite-element method
    D. A. Ammosov
    V. I. Vasil’ev
    M. V. Vasil’eva
    S. P. Stepanov
    Theoretical and Mathematical Physics, 2022, 211 : 595 - 610
  • [37] Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods
    Chung, Eric
    Efendiev, Yalchin
    Hou, Thomas Y.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 320 : 69 - 95
  • [38] Finite element method for Cosserat elasticity
    Providas, E
    Kattis, MA
    COMPUTATIONAL TECHNIQUES FOR MATERIALS, COMPOSITES AND COMPOSITE STRUCTURES, 2000, : 47 - 56
  • [39] A NEW MULTISCALE FINITE ELEMENT METHOD FOR MECHANICAL ANALYSIS OF PERIODIC HETEROGENEOUS COSSERAT MATERIALS
    Xie, Z. Q.
    Zhang, H. W.
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2013, 11 (04) : 369 - 387
  • [40] A computational macroscopic model of piezomagnetoelectric materials using Generalized Multiscale Finite Element Method
    Ammosov, Dmitry
    Nasedkin, Andrey
    Muratova, Galina
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 437