Generalized multiscale finite element method for a nonlinear elastic strain-limiting Cosserat model

被引:0
|
作者
Ammosov, Dmitry [1 ]
Mai, Tina [2 ,3 ]
Galvis, Juan [4 ]
机构
[1] North Eastern Fed Univ, Computat Technol & Artificial Intelligence, Yakutsk 677980, Republic Of Sak, Russia
[2] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[3] Duy Tan Univ, Fac Nat Sci, Da Nang 550000, Vietnam
[4] Univ Nacl Colombia, Dept Matemat, Carrera 45 26-85,Edificio Uriel Gutierrez, Bogota, Colombia
基金
俄罗斯科学基金会;
关键词
Generalized multiscale finite element method; Adaptivity; Residual-based online multiscale basis; functions; Strain-limiting; Nonlinear Cosserat elasticity; Heterogeneous media; HOMOGENIZATION; GMSFEM; MATTER;
D O I
10.1016/j.jcp.2024.113428
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For nonlinear Cosserat elasticity, we consider multiscale methods in this paper. In particular, we explore the generalized multiscale finite element method (GMsFEM) to solve an isotropic Cosserat problem with strain-limiting property (ensuring bounded linearized strains even under high stresses). Such strain-limiting Cosserat model can find potential applications in solids and biological fibers. However, Cosserat media with naturally rotational degrees of freedom, nonlinear constitutive relations, high contrast, and heterogeneities may produce challenging multiscale characteristics in the solution, and upscaling by multiscale methods is necessary. Therefore, we utilize the offline and residual-based online (adaptive or uniform) GMsFEM in this context while handling the nonlinearity by Picard iteration. Through various two-dimensional experiments (for perforated, composite, and stochastically heterogeneous media with small and big strain-limiting parameters), our numerical results show the approaches' convergence, efficiency, and robustness. In addition, these results demonstrate that such approaches provide good accuracy, the online GMsFEM gives more accurate solutions than the offline one, and the online adaptive strategy has similar accuracy to the uniform one but with fewer degrees of freedom.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Generalized multiscale finite element method for a strain-limiting nonlinear elasticity model
    Fu, Shubin
    Chung, Eric
    Mai, Tina
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 359 : 153 - 165
  • [2] GENERALIZED MULTISCALE FINITE ELEMENT TREATMENT OF A HETEROGENEOUS NONLINEAR STRAIN-LIMITING ELASTIC MODEL
    Vasilyeva, Maria
    Mallikarjunaiah, S. M.
    MULTISCALE MODELING & SIMULATION, 2024, 22 (01): : 334 - 368
  • [3] Finite element approximation of a strain-limiting elastic model
    Bonito, Andrea
    Girault, Vivette
    Suli, Endre
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (01) : 29 - 86
  • [4] On an elastic strain-limiting special Cosserat rod model
    Rajagopal, K. R.
    Rodriguez, C.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (01): : 1 - 30
  • [5] Analysis and approximation of a strain-limiting nonlinear elastic model
    Bulicek, M.
    Malek, J.
    Sueli, E.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2015, 20 (01) : 92 - 118
  • [6] SPECTRAL APPROXIMATION OF A STRAIN-LIMITING NONLINEAR ELASTIC MODEL
    Gelmetti, Nicolo
    Suli, Endre
    MATEMATICKI VESNIK, 2019, 71 (1-2): : 63 - 89
  • [7] Generalized macroscale model for Cosserat elasticity using Generalized Multiscale Finite Element Method
    Ammosov, Dmitry
    Efendiev, Yalchin
    Grekova, Elena
    Vasilyeva, Maria
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 461
  • [8] A finite-element discretization of some boundary value problems for nonlinear strain-limiting elastic bodies
    Yoon, Hyun C.
    Mallikarjunaiah, S. M.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2022, 27 (02) : 281 - 307
  • [9] Finite element model for a coupled thermo-mechanical system in nonlinear strain-limiting thermoelastic body
    Vasudeva, Karthik K. K.
    Mallikarjunaiah, S. M.
    Yoon, Hyun Chul
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 108
  • [10] An efficient finite element method for computing the response of a strain-limiting elastic solid containing a V-notch and inclusions
    Shylaja, G.
    Kesavulu Naidu, V.
    Venkatesh, B.
    Mallikarjunaiah, S. M.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2025, 105 (02):