CSWin-UNet: Transformer UNet with cross-shaped windows for medical image segmentation

被引:8
|
作者
Liu, Xiao [1 ]
Gao, Peng [1 ,3 ]
Yu, Tao [1 ]
Wang, Fei [2 ]
Yuan, Ru-Yue
机构
[1] Qufu Normal Univ, Sch Cyber Sci & Engn, Qufu, Peoples R China
[2] Harbin Inst Technol, Sch Integrated Circuits, Shenzhen, Peoples R China
[3] Yuntian Educ Grp, Hangzhou 253700, Peoples R China
关键词
Medical image segmentation; Deep learning; Attention mechanism; Neural network;
D O I
10.1016/j.inffus.2024.102634
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning, especially convolutional neural networks (CNNs) and Transformer architectures, have become the focus of extensive research in medical image segmentation, achieving impressive results. However, CNNs come with inductive biases that limit their effectiveness in more complex, varied segmentation scenarios. Conversely, while Transformer-based methods excel at capturing global and long-range semantic details, they suffer from high computational demands. In this study, we propose CSWin-UNet, a novel U-shaped segmentation method that incorporates the CSWin self-attention mechanism into the UNet to facilitate horizontal and vertical stripes self-attention. This method significantly enhances both computational efficiency and receptive field interactions. Additionally, our innovative decoder utilizes a content-aware reassembly operator that strategically reassembles features, guided by predicted kernels, for precise image resolution restoration. Our extensive empirical evaluations on diverse datasets, including synapse multi-organ CT, cardiac MRI, and skin lesions demonstrate that CSWin-UNet maintains low model complexity while delivering high segmentation accuracy.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] TGDAUNet: Transformer and GCNN based dual-branch attention UNet for medical image segmentation
    Song, Pengfei
    Li, Jinjiang
    Fan, Hui
    Fan, Linwei
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 167
  • [32] LATrans-Unet: Improving CNN-Transformer with Location Adaptive for Medical Image Segmentation
    Lin, Qiqin
    Yao, Junfeng
    Hong, Qingqi
    Cao, Xianpeng
    Zhou, Rongzhou
    Xie, Weixing
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XIII, 2024, 14437 : 223 - 234
  • [33] TAC-UNet: transformer-assisted convolutional neural network for medical image segmentation
    He, Jingliu
    Ma, Yuqi
    Yang, Mingyue
    Yang, Wensong
    Wu, Chunming
    Chen, Shanxiong
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (12) : 8824 - 8839
  • [34] Multiresolution Aggregation Transformer UNet Based on Multiscale Input and Coordinate Attention for Medical Image Segmentation
    Chen, Shaolong
    Qiu, Changzhen
    Yang, Weiping
    Zhang, Zhiyong
    SENSORS, 2022, 22 (10)
  • [35] RT-Unet: An advanced network based on residual network and transformer for medical image segmentation
    Li, Bo
    Liu, Sikai
    Wu, Fei
    Li, GuangHui
    Zhong, Meiling
    Guan, Xiaohui
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (11) : 8565 - 8582
  • [36] Combining Swin Transformer With UNet for Remote Sensing Image Semantic Segmentation
    Fan, Lili
    Zhou, Yu
    Liu, Hongmei
    Li, Yunjie
    Cao, Dongpu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 11
  • [37] EMED-UNet: An Efficient Multi-Encoder-Decoder Based UNet for Medical Image Segmentation
    Shah, Kashish D.
    Patel, Dhaval K.
    Thaker, Minesh P.
    Patel, Harsh A.
    Saikia, Manob Jyoti
    Ranger, Bryan J.
    IEEE ACCESS, 2023, 11 : 95253 - 95266
  • [38] Swin Transformer Embedding UNet for Remote Sensing Image Semantic Segmentation
    He, Xin
    Zhou, Yong
    Zhao, Jiaqi
    Zhang, Di
    Yao, Rui
    Xue, Yong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [39] RM-UNet: UNet-like Mamba with rotational SSM module for medical image segmentation
    Tang, Hao
    Huang, Guoheng
    Cheng, Lianglun
    Yuan, Xiaochen
    Tao, Qi
    Chen, Xuhang
    Zhong, Guo
    Yang, Xiaohui
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (11) : 8427 - 8443
  • [40] Light-UNet: An Efficient Segmentation Network for Medical Image
    Zhang, Yue
    Xu, Chao
    Zhang, Zhifan
    Wang, Jianjun
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT VI, ICIC 2024, 2024, 14867 : 302 - 313