Constraints Driven Safe Reinforcement Learning for Autonomous Driving Decision-Making

被引:0
|
作者
Gao, Fei [1 ,2 ]
Wang, Xiaodong [1 ]
Fan, Yuze [1 ]
Gao, Zhenhai [1 ,2 ]
Zhao, Rui [1 ]
机构
[1] Jilin Univ, Coll Automot Engn, Changchun 130025, Peoples R China
[2] Jilin Univ, Natl Key Lab Automot Chassis Integrat & Bion, Changchun 130025, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
基金
美国国家科学基金会;
关键词
Autonomous vehicles; Safety; Road transportation; Decision making; Planning; Measurement; Accuracy; Autonomous driving; Reinforcement learning; constrained policy optimization; reinforcement learning;
D O I
10.1109/ACCESS.2024.3454249
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Although reinforcement learning (RL) methodologies exhibit potential in addressing decision-making and planning problems in autonomous driving, ensuring the safety of the vehicle under all circumstances remains a formidable challenge in practical applications. Current RL methods are predominantly driven by singular reward mechanisms, frequently encountering difficulties in balancing multiple sub-rewards such as safety, comfort, and efficiency. To address these limitations, this paper introduces a constraint-driven safety RL method, applied to decision-making and planning policy in highway scenarios. This method ensures decisions maximize performance rewards within the bounds of safety constraints, exhibiting exceptional robustness. Initially, the framework reformulates the autonomous driving decision-making problem as a Constrained Markov Decision Process (CMDP) within the safety RL framework. It then introduces a Multi-Level Safety-Constrained Policy Optimization (MLSCPO) method, incorporating a cost function to address safety constraints. Ultimately, simulated tests conducted within the CARLA environment demonstrate that the proposed method MLSCPO outperforms the current advanced safe reinforcement learning policy, Proximal Policy Optimization with Lagrangian (PPO-Lag) and the traditional stable longitudinal and lateral autonomous driving model, Intelligent Driver Model with Minimization of Overall Braking Induced by Lane Changes (IDM+MOBIL). Compared to the classic IDM+MOBIL method, the proposed approach not only achieves efficient driving but also offers a better driving experience. In comparison with the reinforcement learning method PPO-Lag, it significantly enhances safety while ensuring driving efficiency, achieving a zero-collision rate. In the future, we will integrate the aforementioned potential expansion plans to enhance the usability and generalization capabilities of the method in real-world applications.
引用
收藏
页码:128007 / 128023
页数:17
相关论文
共 50 条
  • [21] An Integrated Lateral and Longitudinal Decision-Making Model for Autonomous Driving Based on Deep Reinforcement Learning
    Cui, Jianxun
    Zhao, Boyuan
    Qu, Mingcheng
    JOURNAL OF ADVANCED TRANSPORTATION, 2023, 2023
  • [22] Autonomous Vehicles' Decision-Making Behavior in Complex Driving Environments Using Deep Reinforcement Learning
    Qi, Xiao
    Ye, Yingjun
    Sun, Jian
    CICTP 2019: TRANSPORTATION IN CHINA-CONNECTING THE WORLD, 2019, : 5853 - 5864
  • [23] Generalized Single-Vehicle-Based Graph Reinforcement Learning for Decision-Making in Autonomous Driving
    Yang, Fan
    Li, Xueyuan
    Liu, Qi
    Li, Zirui
    Gao, Xin
    SENSORS, 2022, 22 (13)
  • [24] Leveraging on Deep Reinforcement Learning for Autonomous Safe Decision-Making in Highway On-ramp Merging
    Kherroubi, Zine el Abidine
    Aknine, Samir
    Bacha, Rebiha
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 15815 - 15816
  • [25] Deep Reinforcement Learning Based Decision-Making Strategy of Autonomous Vehicle in Highway Uncertain Driving Environments
    Deng, Huifan
    Zhao, Youqun
    Wang, Qiuwei
    Nguyen, Anh-Tu
    AUTOMOTIVE INNOVATION, 2023, 6 (03) : 438 - 452
  • [26] Combining reinforcement learning with rule-based controllers for transparent and general decision-making in autonomous driving
    Likmeta, Amarildo
    Metelli, Alberto Maria
    Tirinzoni, Andrea
    Giol, Riccardo
    Restelli, Marcello
    Romano, Danilo
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2020, 131 (131)
  • [27] Integration of Planning and Deep Reinforcement Learning in Speed and Lane Change Decision-Making for Highway Autonomous Driving
    Zhang, Sunan
    Zhuang, Weichao
    Li, Bingbing
    Li, Ke
    Xia, Tianyu
    Hu, Bo
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (01): : 521 - 535
  • [28] Dyna-PPO reinforcement learning with Gaussian process for the continuous action decision-making in autonomous driving
    Guanlin Wu
    Wenqi Fang
    Ji Wang
    Pin Ge
    Jiang Cao
    Yang Ping
    Peng Gou
    Applied Intelligence, 2023, 53 : 16893 - 16907
  • [29] Driving Tasks Transfer Using Deep Reinforcement Learning for Decision-Making of Autonomous Vehicles in Unsignalized Intersection
    Shu, Hong
    Liu, Teng
    Mu, Xingyu
    Cao, Dongpu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (01) : 41 - 52
  • [30] Dyna-PPO reinforcement learning with Gaussian process for the continuous action decision-making in autonomous driving
    Wu, Guanlin
    Fang, Wenqi
    Wang, Ji
    Ge, Pin
    Cao, Jiang
    Ping, Yang
    Gou, Peng
    APPLIED INTELLIGENCE, 2023, 53 (13) : 16893 - 16907