S-Adapter: Generalizing Vision Transformer for Face Anti-Spoofing With Statistical Tokens

被引:2
|
作者
Cai, Rizhao [1 ]
Yu, Zitong [2 ]
Kong, Chenqi [1 ]
Li, Haoliang [3 ]
Chen, Changsheng [4 ,5 ]
Hu, Yongjian [6 ,7 ]
Kot, Alex C. [1 ]
机构
[1] Nanyang Technol Univ, Sch EEE, ROSE Lab, Singapore 639798, Singapore
[2] Great Bay Univ, Sch Comp & Informat Technol, Shantou 523000, Peoples R China
[3] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
[4] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen Key Lab Media Secur, State Key Lab Radiofrequency Heterogeneous Integra, Shenzhen 518060, Peoples R China
[5] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
[6] South China Univ Technol, Sch Elect & Informat Engn, Guangzhou 511442, Peoples R China
[7] China Singapore Int Joint Res Inst, Guangzhou 510555, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptation models; Face recognition; Training; Histograms; Data models; Feature extraction; Faces; Vision transformer (ViT); adapter; histogram; face anti-spoofing; face presentation attack detection; domain generalization; PRESENTATION ATTACK DETECTION; ADAPTATION;
D O I
10.1109/TIFS.2024.3420699
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Face Anti-Spoofing (FAS) aims to detect malicious attempts to invade a face recognition system by presenting spoofed faces. State-of-the-art FAS techniques predominantly rely on deep learning models but their cross-domain generalization capabilities are often hindered by the domain shift problem, which arises due to different distributions between training and testing data. In this study, we develop a generalized FAS method under the Efficient Parameter Transfer Learning (EPTL) paradigm, where we adapt the pre-trained Vision Transformer models for the FAS task. During training, the adapter modules are inserted into the pre-trained ViT model, and the adapters are updated while other pre-trained parameters remain fixed. We find the limitations of previous vanilla adapters in that they are based on linear layers, which lack a spoofing-aware inductive bias and thus restrict the cross-domain generalization. To address this limitation and achieve cross-domain generalized FAS, we propose a novel Statistical Adapter (S-Adapter) that gathers local discriminative and statistical information from localized token histograms. To further improve the generalization of the statistical tokens, we propose a novel Token Style Regularization (TSR), which aims to reduce domain style variance by regularizing Gram matrices extracted from tokens across different domains. Our experimental results demonstrate that our proposed S-Adapter and TSR provide significant benefits in both zero-shot and few-shot cross-domain testing, outperforming state-of-the-art methods on several benchmark tests. We will release the source code upon acceptance.
引用
收藏
页码:8385 / 8397
页数:13
相关论文
共 50 条
  • [21] Anti-Spoofing of Live Face Authentication on Smartphone
    Tseng, Tz-Chia
    Shih, Teng-Fu
    Fuh, Chiou-Shann
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2021, 37 (03) : 605 - 616
  • [22] Face Anti-Spoofing Based on NIR Photos
    Shi, Zhiyuan
    Zhang, Hao
    Gao, Zhibin
    Huang, Lianfen
    PROCEEDINGS OF 2019 IEEE 13TH INTERNATIONAL CONFERENCE ON ANTI-COUNTERFEITING, SECURITY, AND IDENTIFICATION (IEEE-ASID'2019), 2019, : 31 - 35
  • [23] Multimodal contrastive learning for face anti-spoofing
    Deng, Pengchao
    Ge, Chenyang
    Wei, Hao
    Sun, Yuan
    Qiao, Xin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 129
  • [24] Dual feature disentanglement for face anti-spoofing
    Ma, Yimei
    Qian, Jianjun
    Li, Jun
    Yang, Jian
    PATTERN RECOGNITION, 2024, 155
  • [25] Research Progress of Face Recognition Anti-spoofing
    Zhang F.
    Zhao S.-K.
    Yuan C.
    Chen W.
    Liu X.-L.
    Chao H.-C.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (07): : 2411 - 2446
  • [26] Meta-Teacher For Face Anti-Spoofing
    Qin, Yunxiao
    Yu, Zitong
    Yan, Longbin
    Wang, Zezheng
    Zhao, Chenxu
    Lei, Zhen
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (10) : 6311 - 6326
  • [27] Progressive Transfer Learning for Face Anti-Spoofing
    Quan, Ruijie
    Wu, Yu
    Yu, Xin
    Yang, Yi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3946 - 3955
  • [28] Face Anti-Spoofing Based on Radon Transform
    Albu, Razvan D.
    2015 13TH INTERNATIONAL CONFERENCE ON ENGINEERING OF MODERN ELECTRIC SYSTEMS (EMES), 2015,
  • [29] Consistency Regularization for Deep Face Anti-Spoofing
    Wang, Zezheng
    Yu, Zitong
    Wang, Xun
    Qin, Yunxiao
    Li, Jiahong
    Zhao, Chenxu
    Liu, Xin
    Lei, Zhen
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 1127 - 1140
  • [30] Face Anti-Spoofing using Haralick Features
    Agarwal, Akshay
    Singh, Richa
    Vatsa, Mayank
    2016 IEEE 8TH INTERNATIONAL CONFERENCE ON BIOMETRICS THEORY, APPLICATIONS AND SYSTEMS (BTAS), 2016,