Modification of LiMn2O4 Cathodes to Boost Kinetics Match via rGO for High-Performance Rocking-Chair Lithium-Ion Capacitors

被引:3
|
作者
Li, Haoquan [1 ]
Chen, Nuo [1 ]
Liu, Tianfu [1 ]
Wang, Ruiting [1 ]
Gao, Xiang [1 ]
Guo, Longlong [1 ]
Chen, Huqiang [1 ]
Shi, Rongrong [1 ]
Gao, Wensheng [1 ]
Bai, Yongxiao [1 ]
机构
[1] Lanzhou Univ, Inst Soft Matter & Adv Funct Mat, Carbon New Mat Ind Technol Ctr Gansu Prov, Minist Educ,Key Lab Special Funct Mat & Struct Des, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
rocking-chair lithium-ion capacitors; kineticsmatch; lithium manganate; graphene oxide; conductivenetwork; NANOPARTICLES;
D O I
10.1021/acsami.4c06850
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The rocking-chair lithium-ion capacitors (RLICs), composed of a battery-type cathode and capacitive-type anode, alleviates the issue of increased internal resistance caused by electrolyte consumption during the cycling process of the lithium-ion capacitors (LICs). However, the poor conductivity of cathode materials and the mismatch between the cathode and anode are the key issues that hinder its commercial application. In this work, a modification simplification strategy is proposed to tailor the conductivity of the cathode and matching characteristic with the anode. The in situ grown lithium manganate (LMO) is featured with a three-dimensional conductive network constructed by reduced graphene oxide (rGO). The optimized LMO/rGO composite cathode demonstrates an excellent rate performance, lithium-ion diffusion rate, and cycling performance. After assembling an RLICs with activated carbon (AC), the RLICs exhibits an energy density of as high as 239.11 Wh/kg at a power density of 400 W/kg. Even at a power density of 200 kW/kg, its energy density can maintain at 39.9 Wh/kg. These excellent electrochemical performances are mainly attributed to the compounding of LMO with rGO, which not only improves the conductivity of the cathode but also realizes a better matching with the capacitive-type anode. This modification strategy provides a reference for the further development of energy storage devices suitable for actual production conditions and application scenarios.
引用
收藏
页码:44697 / 44705
页数:9
相关论文
共 50 条
  • [31] Mesoporous Spinel LiMn2O4 Nanomaterial as a Cathode for High-Performance Lithium Ion Batteries
    Hwang, Bo-Mi
    Kim, Si-Jin
    Lee, Young-Woo
    Han, Biao
    Kim, Seong-Bae
    Kim, Woo-Seong
    Park, Kyung-Won
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2013, 8 (07): : 9449 - 9458
  • [32] Electrochemical performance of LiMn2O4/LiFePO4 blend cathodes for lithium ion batteries
    Chengguang Qiu
    Lina Liu
    Fei Du
    Xu Yang
    Chunzhong Wang
    Gang Chen
    Yingjin Wei
    Chemical Research in Chinese Universities, 2015, 31 : 270 - 275
  • [33] Electrochemical Performance of LiMn2O4/LiFePO4 Blend Cathodes for Lithium Ion Batteries
    Qiu Chengguang
    Liu Lina
    Du Fei
    Yang Xu
    Wang Chunzhong
    Chen Gang
    Wei Yingjin
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2015, 31 (02) : 270 - 275
  • [34] Lithium-Ion Conductivity Epitaxial Layer Contributing to the Structure and Cycling Stability of LiMn2O4 Cathodes
    Wang, Jing
    Xu, Youlong
    Niu, Yao
    Liu, Yali
    Yao, Xianghua
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (14) : 5408 - 5419
  • [35] Effect of cyclohexyl benzene on overcharge performance of LiMn2O4 lithium-ion cell
    School of Metallurgy Science and Engineering, Central South University, Changsha 410083, China
    不详
    Zhongguo Youse Jinshu Xuebao, 2008, 11 (2025-2029):
  • [36] Surface Modification of Spinel LiMn2O4 with Y2O3 for Lithium-ion Battery
    Bai, Ying
    Wu, Feng
    Yang, Hua-tong
    Zhong, Yu
    Wu, Chuan
    CHEMICAL ENGINEERING AND MATERIAL PROPERTIES, PTS 1 AND 2, 2012, 391-392 : 1069 - +
  • [37] PERFORMANCE OF LITHIUM-ION RECHARGEABLE BATTERIES - GRAPHITE WHISKER ELECTROLYTE LICOO2 ROCKING-CHAIR SYSTEM
    ABE, H
    ZAGHIB, K
    TATSUMI, K
    HIGUCHI, S
    JOURNAL OF POWER SOURCES, 1995, 54 (02) : 236 - 239
  • [38] High field ESR measurements on the lithium-ion battery substance LiMn2O4
    Takano, S.
    Kaji, T.
    Okubo, S.
    Yoshida, M.
    Inagaki, Y.
    Kimura, S.
    Asano, T.
    Ohta, H.
    Kunimoto, T.
    Dziembaj, R.
    Molenda, M.
    Rudowicz, C.
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 3, NO 8, 2006, 3 (08): : 2820 - +
  • [39] Double-shelled hollow microspheres of LiMn2O4 for high-performance lithium ion batteries
    Ding, Yuan-Li
    Zhao, Xin-Bing
    Xie, Jian
    Cao, Gao-Shao
    Zhu, Tie-Jun
    Yu, Hong-Ming
    Sun, Cheng-Yue
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (26) : 9475 - 9479
  • [40] LiMn2O4 nanoparticles as cathode in aqueous lithium-ion battery
    Kheirmand M.
    Ghasemi A.
    Surface Engineering and Applied Electrochemistry, 2016, 52 (5) : 480 - 486