3D-Printing of Slanted Corrugated Horn Antennas for the E-Band

被引:0
|
作者
Tafertshofer, Markus [1 ]
Binder, Maximilian [2 ]
Biebl, Erwin [1 ]
机构
[1] TUM Sch Computat Informat & Technol, Garching, Germany
[2] Heidenhain GmbH, Traunreut, Germany
来源
关键词
GAIN;
D O I
10.2528/PIERM24070404
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the feasibility of using additive manufacturing (AM) technologies for the fabrication of corrugated horn antennas for the E-band (60 to 90 GHz) is investigated. Stereolithography apparatus (SLA) and selective laser melting (SLM) are identified as the most suitable technologies for manufacturing horn antennas in this frequency range. To ensure good manufacturing, slanted corrugations are utilized. The antennas have a gain of 13 dBi at 72 GHz and are designed in CST Microwave Studio. For the fabrication of the plastic parts, SLA and the finer-scaled projection micro stereolithography (P mu SL) technology are applied. The metal antennas are printed with direct metal laser sintering (DMLS) from the aluminum alloy AlSi10Mg 10 Mg and the finer scaled micro metal laser sintering (mu MLS) from 316L stainless steel. Overall, four antennas are fabricated. The plastic antennas are plated with copper. Dimensional tolerances and surface roughness of the antennas are evaluated. The antennas are investigated considering H- and E-plane beam shapes, input reflection, and realized gain. The measurement is conducted in an anechoic chamber using the Single-Antenna method. The mu MLS antenna supplies the best results.
引用
收藏
页码:127 / 134
页数:8
相关论文
共 50 条
  • [41] 3D-Printing of zirconia dental prostheses
    Rodrigues, I.
    Olhero, S.
    Guedes, M.
    Serro, A. P.
    Figueiredo-Pina, C. G.
    ANNALS OF MEDICINE, 2021, 53 : S69 - S71
  • [42] 3D-printing analysis of surface finish
    Morampudi, Priyadarsini
    Ramana, V. S. N. Venkata
    Prabha, K. Aruna
    Swetha, S.
    Rao, A. N. Brahmeswara
    MATERIALS TODAY-PROCEEDINGS, 2021, 43 : 587 - 592
  • [43] 3D-Printing Orthotic and Prosthetic Devices
    Sirinterlikci, Arif
    Swink, Isaac
    MANUFACTURING ENGINEERING, 2015, : 69 - 71
  • [44] 3D-Printing: Applications in Cardiovascular Imaging
    Foley T.A.
    El Sabbagh A.
    Anavekar N.S.
    Williamson E.E.
    Matsumoto J.M.
    Current Radiology Reports, 5 (9)
  • [45] When Photoswitches Meet 3D-Printing
    Boesel, Luciano F.
    Ulrich, Sebastian
    Wang, Xiaopu
    Qin, Xiao-Hua
    CHIMIA, 2021, 75 (10) : 889 - 889
  • [46] 3D-Printing of Lightweight Cellular Composites
    Compton, Brett G.
    Lewis, Jennifer A.
    ADVANCED MATERIALS, 2014, 26 (34) : 5930 - +
  • [47] 3D-Printing Human Body Parts
    Kirkpatrick, Keith
    COMMUNICATIONS OF THE ACM, 2017, 60 (10) : 15 - 17
  • [48] 3D-PRINTING BIOPLASTICS ONTO TEXTILES
    Alarcon, Camila Martinez
    Svilans, Tom
    ECAADE 2023 DIGITAL DESIGN RECONSIDERED, VOL 1, 2023, : 449 - 458
  • [49] FREEFORM 3D-PRINTING OF PURE CERAMICS
    Mahmoudi, Mohammadreza
    Burlison, Scott R.
    Moreno, Salvador
    Minary, Majid
    PROCEEDINGS OF THE ASME 2020 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2020, VOL 3, 2020,
  • [50] ROBOTIC 3D-PRINTING FOR BUILDING AND CONSTRUCTION
    Pham Tien Hung
    Hui, Lim Jian
    Quang-Cuong Pham
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING (PRO-AM 2016), 2016, : 300 - 305